Archivo de la categoría: Átomos

La Ciencia de la Invisibilidad

Todos, absolutamente todos hemos estado en algún momento de nuestra existencia en situaciones absolutamente bochornosas, es completamente inevitable. Muchos nos hemos tropezado para luego caer estrepitosamente, chocar el auto de nuestros padres, olvidarte del aniversario de tu pareja, llamar “mama”  a alguna de tus profesoras (algo traumatico), en fin, un montón de situaciones que nadie quisiera experimentar.

Es probable que dentro de unos años te olvides de lo que hiciste un verano, del cumpleaños de tu hijo o hasta del nombre de tu marido, pero lo que nunca olvidarás son esos momentos embarazosos en los que te hubiera gustado que te tragara la tierra, o por lo menos ser invisible, que nadie te viera y así por lo menos no ser victima de las miradas asesinas de los agraviados y quizás una muerte próxima.

Aunque ser invisible no solamente serviría para escapar de alguna situación “difícil”. También, es el sueño de muchos ladrones, científicos locos, supervillanos y un montón mas de desequilibrados mentales.

Aunque seria una gran tentación para cualquier humano el poseer esa capacidad, podría hacer lo quisiera sin que nadie pudiera verlo… Algo que quebrantaría la moralidad de cualquier persona… Pero desde el punto de vista científico, ¿Es posible?

¿Realmente es posible hacernos invisibles o hacer invisible algún objeto?… ¿Existe mas de un método para conseguirlo?… ¿Que utilidades puede traernos la invisibilidad ademas de el uso militar?

Por ejemplo, en la famosa serie Star Trek IV: El viaje a casa, la tripulación del Enterprise se apropia de un crucero de batalla Klingon. A diferencia de las naves espaciales de la Flota Estelar de la Federación, las naves espaciales del imperio Klingon tienen un «dispositivo de ocultación» secreto que las hace invisibles a la luz o el radar, de modo que las naves de Klingon pueden deslizarse sin ser detectadas tras las naves espaciales de la Federación y tenderles emboscadas con impunidad. Este dispositivo de ocultación ha dado al imperio Klingon una ventaja  estratégica sobre la Federación de Planetas.

Nave Klingon

Pero, ¿Realmente es posible tal dispositivo? o ¿tan solo es una idea disparatada imposible de realizar? La invisibilidad ha sido siempre una de las maravillas de la ciencia ficción y de lo fantástico, desde las páginas de El hombre invisible al mágico manto de invisibilidad de los libros de Harry Potter, o el anillo en El señor de los anillos (mi preferido).

El Anillo Único – El Señor de los Anillos

Pero durante un siglo al menos, casi todos los físicos han descartado la posibilidad de mantos de invisibilidad o algo que se le parezca, afirmando lisa y  llanamente que son imposibles: violan las leyes de la óptica y no se adecuan a ninguna de las propiedades conocidas de la materia.

Pero hoy lo imposible puede hacerse posible.  Nuevos avances en metamateriales están obligando a una revisión importante de los libros de texto de óptica. Se han construido en el laboratorio prototipos operativos de tales materiales que han despertado un gran interés en los medios de comunicación, la industria y el ejército al hacer que lo visible se haga invisible.

La invisibilidad a través de la historia

La invisibilidad es quizá una de las ideas más viejas en la mitología antigua. Desde el comienzo de la historia escrita, las personas que se han encontrado solas en una noche procelosa se han sentido aterrorizadas por los espíritus invisibles de los muertos, las almas de los que desaparecieron hace tiempo que acechan en la oscuridad.

El héroe griego Perseo pudo acabar con la malvada Medusa armado con el yelmo de la invisibilidad.

Los generales de los ejércitos han soñado con un dispositivo de invisibilidad. Siendo invisible, uno podría atravesar las líneas enemigas y capturar al enemigo por sorpresa. Los criminales podrían utilizar la invisibilidad para llevar a cabo robos espectaculares.

La invisibilidad desempeñaba un papel central en la teoría de Platón de la ética y la moralidad. En su principal obra filosófica, La República, Platón narra el mito del anillo de Giges. El pobre pero honrado pastor Giges de Lidia entra en una cueva oculta y encuentra una tumba que contiene un cadáver que lleva un anillo de oro. Giges descubre que ese anillo de oro tiene el poder mágico de hacerle invisible. Pronto este pobre pastor queda embriagado con el poder que le da este anillo. Después de introducirse subrepticiamente en el palacio del rey, Giges utiliza su poder para seducir a la reina y, con la ayuda de esta, asesinar al rey y convertirse en el próximo rey de Lidia.

La moraleja que deseaba extraer Platón es que ningún hombre puede resistir la tentación de poder robar y matar a voluntad. Todos los hombres son corruptibles. La moralidad es una construcción social impuesta desde fuera. Un hombre puede aparentar ser moral en público para mantener su reputación de integridad y honestidad, pero una vez que posee el poder de la invisibilidad, el uso de dicho poder sería irresistible.

Platón

 (Algunos creen que esta moraleja fue la inspiración para la trilogía de El señor de los anillos de J. R. R. Tolkien, en la que un anillo que garantiza la invisibilidad a quien lo lleva es también una fuente del mal).

La invisibilidad es asimismo un elemento habitual en la ciencia ficción. En la serie Flash Gordon de la década de 1950, Flash se hace invisible para escapar al pelotón de fusilamiento de Ming el Despiadado. En las novelas y las películas de Harry Potter, Harry lleva un manto especial o “mágico” que le permite moverse por el colegio Hogwarts sin ser detectado.

La capa de la invisibilidad de Harry Potter

H.G. Wells dio forma concreta a esta mitología con su clásica novela El hombre invisible, en la que un estudiante de medicina descubre accidentalmente el poder de la cuarta dimensión y se hace invisible. Por desgracia, él utiliza este fantástico poder para su beneficio privado, empieza una oleada de crímenes menores, y al final muere tratando de huir desesperadamente de la policía.

El hombre invisible

Las ecuaciones de Maxwell y el secreto de la luz

Solo con la obra del físico escocés James Clerk Maxwell, uno de los gigantes de la física del siglo XIX, los físicos tuvieron una comprensión firme de las leyes de la óptica. Maxwell era, en cierto sentido, lo contrario de Michael Faraday.

Mientras que Faraday tenía un soberbio instinto experimental pero ninguna educación formal, Maxwell era un maestro de las matemáticas avanzadas. Destacó como estudiante de física matemática en  Cambridge, donde Isaac Newton había trabajado dos siglos antes. Newton había inventado el cálculo infinitesimal, que se expresaba en el lenguaje de las «ecuaciones diferenciales», que describen cómo los objetos experimentan cambios infinitesimales en el espacio y el tiempo.

James Clerk Maxwell

El movimiento de las ondas oceánicas, los fluidos, los gases y las balas de cañón podían expresarse en el lenguaje de las ecuaciones diferenciales. Maxwell tenía un objetivo claro: expresar los revolucionarios hallazgos de Faraday y sus campos de fuerza mediante ecuaciones diferenciales precisas.

Maxwell partió del descubrimiento de Faraday de que los campos eléctricos podían convertirse en campos magnéticos, y viceversa. Asumió las representaciones de Faraday de los campos de fuerza y las reescribió en el lenguaje preciso de las ecuaciones diferenciales, lo que dio lugar a uno de los más importantes conjuntos de ecuaciones de la ciencia moderna. constituyen un conjunto de ocho ecuaciones diferenciales de aspecto imponente. Cualquier físico e ingeniero del mundo tiene que jurar sobre ellas cuando llega a dominar el electromagnetismo en la facultad. 

A continuación, Maxwell se hizo la pregunta decisiva: si los campos magnéticos pueden convertirse en campos eléctricos y viceversa, ¿qué sucede si se están convirtiendo continuamente unos en otros en una pauta inacabable? Maxwell encontró que estos campos electromagnéticos crearían una onda muy parecida a las olas en el mar. Calculó la velocidad de dichas ondas y, para su asombro, ¡descubrió que era igual a la velocidad de la luz! En 1864, tras descubrir este hecho, escribió proféticamente: «Esta velocidad es tan próxima a la de la luz que parece que tenemos una buena razón para concluir que la propia luz… es una perturbación electromagnética». 

Fue quizá uno de los mayores descubrimientos de la historia humana. El secreto de la luz se revelaba por fin. Evidentemente, Maxwell se dio cuenta de que todas las cosas, el brillo del amanecer, el resplandor de la puesta de Sol, los extraordinarios colores del arco iris y el firmamento estrellado podían describirse mediante las ondas que garabateaba en una hoja de papel.

Hoy entendemos que todo el espectro electromagnético —desde el radar a la televisión, la luz infrarroja, la luz ultravioleta, los rayos X, las microondas y los rayos gamma— no es otra cosa que ondas de Maxwell, que a su vez son vibraciones de los campos de fuerza de Faraday.  Al comentar la importancia de las ecuaciones de Maxwell, Einstein escribió que son «las más profundas y fructíferas que ha experimentado la física desde la época de Newton».

La teoría de la luz de Maxwell y la teoría atómica dan explicaciones sencillas de la óptica y la invisibilidad. En un sólido, los átomos están fuertemente concentrados, mientras que en un líquido o en un gas las moléculas están mucho más espaciadas. La mayoría de los sólidos son opacos porque los rayos de luz no pueden atravesar la densa matriz de átomos en un sólido, que actúa como un muro de ladrillo. Por el contrario, muchos líquidos y gases son transparentes porque la luz pasa con más facilidad entre los grandes espacios entre sus átomos, un espacio que es mayor que la longitud de onda de la luz visible.

Existen excepciones importantes a esta regla. Muchos cristales son, además de sólidos, transparentes. Pero los átomos de un cristal están dispuestos en una estructura reticular precisa, ordenados en filas regulares, con un espaciado regular entre ellos. Así, un haz luminoso puede seguir muchas trayectorias a través de una red cristalina. Por consiguiente, aunque un cristal está tan fuertemente empaquetado como cualquier sólido, la luz puede abrirse camino a través del cristal.

Bajo ciertas condiciones, un objeto sólido puede hacerse transparente si los átomos se disponen al azar. Esto puede hacerse calentando ciertos materiales a alta temperatura y enfriándolos rápidamente. El vidrio, por ejemplo, es un sólido con muchas propiedades de un líquido debido a la disposición aleatoria de sus átomos. Algunos caramelos también pueden hacerse transparentes con este método. Es evidente que la invisibilidad es una propiedad que surge en el nivel atómico, mediante las ecuaciones de Maxwell, y por ello sería extraordinariamente difícil, si no imposible, de reproducir utilizando métodos ordinarios.

Para hacer invisible a Harry Potter habría que licuarlo, hervirlo para crear vapor, cristalizarlo, calentarlo de nuevo y luego enfriarlo, todo lo cual sería muy difícil de conseguir incluso para un mago.

El ejército, incapaz de crear aviones invisibles, ha intentado hacer lo que más se les parece: crear tecnología furtiva, que hace los aviones invisibles al radar. La tecnología furtiva se basa en las ecuaciones de Maxwell para conseguir una serie de trucos. Un caza a reacción furtivo es perfectamente visible al ojo humano, pero su imagen en la pantalla de un radar enemigo solo tiene el tamaño que correspondería a un pájaro grande. (La tecnología furtiva es en realidad una mezcla de trucos. Cambiando los materiales dentro del caza a reacción, reduciendo su contenido de acero y utilizando en su lugar plásticos y resinas, cambiando los ángulos de su fuselaje, re-ordenando sus toberas, y así sucesivamente, es posible hacer que los haces del radar enemigo que inciden en el aparato se dispersen en todas direcciones, de modo que nunca vuelven a la pantalla del radar enemigo.

Caza furtivo moderno F-35 Lightning II

Incluso con tecnología furtiva, un caza a reacción no es del todo invisible; lo que hace es desviar y dispersar tantas ondas de radar como es técnicamente posible).

Metamateriales e invisibilidad

Pero quizá el más prometedor entre los nuevos desarrollos que implican invisibilidad es un nuevo material exótico llamado  «metamaterial», que tal vez un día haga los objetos verdaderamente invisibles. Resulta irónico que la creación de metamateriales se considerara en otro tiempo imposible porque violaban las leyes de la óptica. Pero en 2006, investigadores de la Universidad de Duke en Durham, Carolina del Norte, y del Imperial College de Londres, desafiaron con éxito la sabiduría convencional y utilizaron metamateriales para hacer un objeto invisible a la radiación de microondas. Aunque hay aún muchos obstáculos que superar, ahora tenemos por primera vez en la historia un diseño para hacer invisibles objetos ordinarios. (La Agencia de Investigación de Proyectos Avanzados de Defensa [DARPA] del Pentágono financió esta investigación).

El potencial revolucionario de los metamateriales «cambiará por completo nuestro enfoque de la óptica y casi todos los aspectos de la electrónica. Algunos de estos metamateriales pueden hacer realidad hazañas que habrían parecido milagrosas hace solo unas décadas».

¿Qué son estos metamateriales? Son sustancias que tienen propiedades ópticas que no se encuentran en la naturaleza. Los metamateriales se crean insertando en una sustancia minúsculos implantes que obligan a las ondas electromagnéticas a, curvarse de formas heterodoxas. En la Universidad,de Duke los científicos insertaron en bandas,de cobre minúsculos circuitos eléctricos dispuestos,en círculos planos concéntricos (una forma,que recuerda algo a las resistencias de un horno,eléctrico).

Ejemplo de lo que seria un auto construido con metamateriales.

El resultado fue una mezcla sofisticada,de cerámica, teflón, compuestos de fibra y componentes,metálicos. Estos minúsculos implantes,en el cobre hacen posible curvar y canalizar de,una forma específica la trayectoria de la radiación,de microondas. Pensemos en cómo fluye un río alrededor de una roca. Puesto que el agua rodea fácilmente la roca, la presencia de la roca no se deja sentir aguas abajo. Del mismo modo, los metamateriales pueden alterar y curvar continuamente la trayectoria de las microondas de manera que estas fluyan alrededor de un cilindro, por ejemplo, lo que haría esencialmente invisible a las microondas todo lo que hay dentro del cilindro.

Si el material puede eliminar toda la reflexión y todas las sombras, entonces puede hacer un objeto totalmente invisible para dicha forma de, radiación. Los científicos demostraron satisfactoriamente,este principio con un aparato hecho de diez anillos,de fibra óptica cubiertos con elementos de,cobre. Un anillo de cobre en el interior del aparato,se hacía casi invisible a la radiación de microondas,pues solo arrojaba una sombra, minúscula.

En el corazón de los metamateriales está su capacidad para manipular algo llamado «índice de refracción ». La refracción es la curvatura que experimenta la trayectoria de la luz cuando atraviesa un medio transparente. Si usted mete la mano en el agua, o mira a través de los cristales de sus gafas, advertirá que el agua y el cristal distorsionan y curvan la trayectoria de la luz ordinaria.

Manipulación de la Refracción por parte de un Metamaterial.

La razón de que la luz se curve en el cristal o en el agua es que la luz se frena cuando entra en un medio transparente denso. La velocidad de la luz en el vacío es siempre la misma, pero la luz que viaja a través del agua o del cristal debe atravesar billones de átomos y con ello se frena. (El cociente entre la velocidad de la luz en el vacío y la velocidad más lenta de la luz entro de un medio es lo que se llama índice de refracción. Puesto que la luz se frena en el vidrio, el índice de refracción de este es siempre mayor que 1,0).

Por ejemplo, el índice de refracción es 1,0 para el vacío, 1,0003 para el aire, 1,5 para el vidrio y 2,4 para el diamante. Normalmente, cuanto más denso es el medio, mayor es el grado de curvatura, y mayor el índice de refracción. Un efecto familiar del índice de refracción es un espejismo. Si usted viaja en coche un día tórrido y mira hacia delante al horizonte, verá cómo la carretera parece brillar y crea la ilusión de un lago donde se refleja la luz.

Un ejemplo de Espejismo en el Desierto.

En el desierto pueden verse a veces las siluetas de ciudades y montañas distantes en el horizonte. Esto se debe a que el aire caliente que sube del asfalto o del suelo del desierto tiene una densidad menor que el aire normal, y por lo tanto un índice de refracción menor que el del aire más frío que le rodea; por ello, la luz procedente de objetos distantes puede refractarse en el asfalto hacia sus ojos y producirle la ilusión de que está viendo objetos distantes.

Normalmente, el índice de refracción es constante. Un fino haz de luz se curva cuando entra en el vidrio y luego sigue una línea recta. Pero supongamos por un momento que pudiéramos controlar el índice de refracción a voluntad, de modo que pudiera cambiar de forma continua en cada punto del vidrio. A medida que la luz se moviera en este nuevo material, se iría curvando y alabeando en nuevas direcciones, en una trayectoria que serpentearía a través de la sustancia.

Si pudiéramos controlar el índice de refracción dentro de un metamaterial de modo que la luz rodeara a un objeto, entonces el objeto se haría invisible. Para ello, este metamaterial debería tener un índice de refracción negativo, lo que cualquier libro de texto de óptica dice que es imposible.

Concepto de Refracción.

(Los metamateriales fueron teorizados por primera vez en un artículo del físico soviético Víctor Veselago en 1967, y se demostró que tenían propiedades ópticas extrañas, tales como un índice de refracción negativo y efecto Doppler inverso. Los metamateriales son tan extraños y aparentemente absurdos que en otro tiempo se pensó que eran imposibles de construir. Pero en los últimos años se han construido metamateriales en el laboratorio, lo que ha obligado a los físicos reacios a reescribir los libros de texto de óptica).

Aunque un verdadero manto de invisibilidad es posible dentro de las leyes de la física, como reconocerán la mayoría de los físicos, aún quedan formidables obstáculos técnicos antes de que esta tecnología pueda extenderse para trabajar con luz visible y no solo radiación de microondas.

En general, las estructuras internas implantadas dentro del metamaterial deben ser más pequeñas que la longitud de onda de la radiación. Por ejemplo, las microondas pueden tener una longitud de onda de unos 3 centímetros, de modo que para que un metamaterial curve la trayectoria de las microondas debe tener insertados en su interior implantes minúsculos menores que 3 centímetros. Pero para hacer un objeto invisible a la luz verde, con una longitud de onda de 500 nanómetros (nm), el metamaterial debe tener insertadas estructuras que sean solo de unos 50 nanómetros de longitud, y estas son escalas de longitud atómica que requieren nanotecnología.

Escala de los Nanómetros y Micrómetros.

(Un nanómetro es una mil millonésima de metro. Aproximadamente cinco átomos pueden caber en un nanómetro). Este es quizá el problema clave al que se enfrentan nuestros intentos de crear un verdadero manto de invisibilidad. Los átomos individuales dentro de un metamaterial tendrían que ser modificados para curvar un rayo de luz como una serpiente.

Metamateriales para luz visible

La carrera ha empezado. Desde que se anunció que se han fabricado materiales en el laboratorio se ha producido una estampida de actividad en esta área, con nuevas ideas y sorprendentes avances cada pocos meses. El objetivo es claro: utilizar nanotecnología para crear metamateriales que puedan curvar la luz visible, no solo las microondas. Se han propuesto varios enfoques, todos ellos muy prometedores. Uno de ellos es utilizar la tecnología ya disponible, es decir, tomar prestadas técnicas ya conocidas de la industria de semiconductores para crear nuevos metamateriales. Una técnica llamada «fotolitografía » está en el corazón de la miniaturización informática, y con ello impulsa la revolución de los ordenadores. Esta tecnología permite a los ingenieros colocar cientos de millones de minúsculos transistores en una pastilla de silicio no mayor que un pulgar.

La razón de que la potencia de los ordenadores se duplique cada dieciocho meses (lo que se conoce como ley de Moore) es que los científicos utilizan luz ultravioleta para «grabar» componentes cada vez más pequeños en un chip de silicio. Esta técnica es muy similar al modo en que se utilizan las plantillas para crear vistosas camisetas. (Los ingenieros de ordenadores empiezan con una delgada tableta de silicio y aplican sobre ella capas extraordinariamente delgadas de materiales diversos. Luego se coloca sobre la tableta una máscara plástica que actúa como una plantilla. Esta contiene los complejos perfiles de los cables, transistores y componentes de ordenador que constituyen el esqueleto básico del circuito. La tableta se baña entonces en radiación ultravioleta, que tiene una longitud de onda muy corta, y dicha radiación imprime la estructura en la tableta fotosensible. Tratando la tableta con gases y ácidos especiales, la circuitería completa de la máscara queda grabada en las zonas de la tableta que estuvieron expuestas a la luz ultravioleta. Este proceso crea una tableta que contiene centenares de millones de surcos minúsculos, que forman los perfiles de los transistores).

Un spinner utilizado en la fotolitografía.

Actualmente, los componentes más pequeños que se pueden crear con este proceso de grabado son de unos 53 nm (o unos 150 átomos de largo). Un hito en la búsqueda de la invisibilidad se alcanzó cuando esta técnica de grabado de tabletas fue utilizada por un grupo de científicos para crear el primer metamaterial que opera en el rango de la luz visible. Científicos en Alemania y en el Departamento de Energía de Estados Unidos anunciaron a principios de 2007 que, por primera vez en la historia, habían fabricado un metamaterial que funcionaba para luz roja. Lo «imposible» se había conseguido en un tiempo notablemente corto. El físico Costas Soukoulis del Laboratorio Ames en Iowa, junto con Stefan Linden, Martin Wegener y Gunnar Dolling de la Universidad de Karlsruhe, en Alemania, fueron capaces de crear un metamaterial que tenía un índice de —0,6 para la luz roja, con una longitud de onda de 780 nm.

Hasta ahora esos científicos han conseguido un índice de refracción negativo solo para luz roja. Su próximo paso sería utilizar esta tecnología para crear un metamaterial que curvara la luz roja enteramente alrededor de un objeto, haciéndolo invisible a dicha luz. Estas líneas de investigación pueden tener desarrollos futuros en el área de los «cristales fotónicos».  El objetivo de la tecnología de cristales fotónicos es crear un chip que utilice luz, en lugar de electricidad, para procesar información.

Esto supone utilizar nanotecnología para grabar minúsculos componentes en una tableta, de modo que el índice de refracción cambie con cada componente. Los transistores que utilizan luz tienen varias ventajas sobre los que utilizan electricidad. Por ejemplo, las pérdidas de calor son mucho menores en los cristales fotónicos. (En los chips de silicio avanzados, el calor generado es suficiente para freír un huevo. Por ello deben ser enfriados continuamente o de lo contrario fallarán, pero mantenerlos fríos es muy costoso).

No es sorprendente que la ciencia de los cristales fotónicos sea ideal para los metamateriales, puesto que ambas tecnologías implican la manipulación del índice de refracción de la luz en la nanoescala.

La Invisibilidad plasmónica

Para no quedarse atrás, otro grupo anunció a mediados de 2007 que había creado un metamaterial que curva luz visible utilizando una tecnología completamente diferente, llamada «plasmónica». Los físicos Henri Lezec, Jennifer Dionne y Harry Atwater del Instituto de Tecnología de California (Caltech) anunciaron que habían creado un metamaterial que tenía un índice negativo para la más difícil región azul-verde del espectro visible de la luz.

El objetivo de la plasmónica es «estrujar» la luz de modo que se puedan manipular objetos en la nanoescala, especialmente en la superficie de metales. La razón de que los metales conduzcan la electricidad es que los electrones están débilmente ligados a los átomos del metal, de modo que pueden moverse con libertad a lo largo de la superficie de la red metálica. La electricidad que fluye por los cables de su casa representa el flujo uniforme de estos electrones débilmente ligados en la superficie metálica. Pero en ciertas condiciones, cuando un haz luminoso incide en la superficie metálica, los electrones pueden vibrar al unísono con el haz luminoso original, lo que da lugar a movimientos ondulatorios de los electrones en la superficie metálica (llamados plasmones), y estos movimientos ondulatorios laten al unísono con el haz luminoso original.

En física, un plasmón es un cuanto de oscilación del plasma.

Y lo que es más importante, estos plasmones se pueden «estrujar» de modo que tengan la misma frecuencia que el haz original (y con ello lleven la misma información) pero tengan una longitud de onda mucho más pequeña. En principio se podrían introducir estas ondas estrujadas en nanocables.

Como sucede con los cristales fotónicos, el objetivo último de la plasmónica es crear chips de ordenador que computen utilizando luz en lugar de electricidad. El grupo del Caltech construyó su metamaterial a partir de dos capas de plata, con un aislante de silicio-nitrógeno en medio (de un espesor de solo 50 nm), que actuaba como una «guía de onda» que podía guiar la dirección de las ondas plasmónicas.

Luz láser entra y sale del aparato a través de dos rendijas horadadas en el metamaterial. Analizando los ángulos a los que se curva la luz láser cuando atraviesa el metamaterial, se puede verificar que la luz está siendo curvada mediante un índice negativo.

El futuro de los metamateriales

Los avances en metamateriales se acelerarán en el futuro por la sencilla razón de que ya hay un gran interés en crear transistores que utilicen haces luminosos en lugar de electricidad. Por consiguiente, la investigación en invisibilidad puede «subirse al carro» de la investigación en curso en cristales fotónicos y plasmónica para crear sustitutos para el chip de silicio. Ya se están invirtiendo centenares de millones de dólares a fin de crear sustitutos para la tecnología del silicio, y la investigación en metamateriales se beneficiará de estos esfuerzos de investigación. Debido a los grandes avances que se dan en este campo cada pocos meses, no es sorprendente que algunos físicos piensen que algún tipo de escudo de invisibilidad puede salir de los laboratorios en unas pocas décadas.

Por ejemplo, los científicos confían en que en los próximos años serán capaces de crear metamateriales que puedan hacer a un objeto totalmente invisible para una frecuencia de luz visible, al menos en dos dimensiones. Hacer esto requerirá insertar minúsculos nanoimplantes ya no en una formación regular, sino en pautas sofisticadas, de modo que la luz se curve suavemente alrededor de un objeto.

Curvatura de la luz sobre un objeto.

A continuación, los científicos tendrán que crear metamateriales que puedan curvar la luz en tres dimensiones, no solo en las superficies bidimensionales planas. La fotolitografía ha sido perfeccionada para hacer tabletas de silicio planas, pero crear metamateriales tridimensionales requerirá apilar tabletas de una forma complicada.

Después de eso, los científicos tendrán que resolver el problema de crear metamateriales que puedan curvar no solo una frecuencia, sino muchas. Esta será quizá la tarea más difícil, puesto que los minúsculos implantes que se han ideado hasta ahora solo curvan luz de una frecuencia precisa. Los científicos tal vez tendrán que crear metamateriales basados en capas, y cada capa curvará una frecuencia específica. La solución a este problema no está clara. En cualquier caso, una vez que se obtenga finalmente un escudo de invisibilidad, será probablemente un aparato complicado. El manto de Harry Potter estaba hecho de tela delgada y flexible, y volvía invisible a cualquiera que se metiese dentro.

Pero para que esto sea posible, el índice de refracción dentro de la tela tendría que estar cambiando constantemente de forma complicada mientras la tela se agitara, lo que no resulta práctico.

Lo más probable es que un verdadero «manto» de invisibilidad tenga que estar hecho de un cilindro sólido de metamateriales, al menos inicialmente. De esa manera, el índice de refracción podría fijarse dentro del cilindro. (Versiones más avanzadas podrían incorporar con el tiempo metamateriales que sean flexibles y puedan retorcerse, y aun así hacer que la luz fluya en la trayectoria correcta dentro de los metamateriales. De esta manera, cualquiera que estuviera en el interior del manto tendría cierta flexibilidad de movimientos).

Algunos han señalado un defecto en el escudo de invisibilidad: cualquiera que estuviese dentro no sería capaz de mirar hacia fuera sin hacerse visible.

Imaginemos a un Harry Potter totalmente invisible excepto por sus ojos, que parecerían estar flotando en el aire. Cualquier agujero para los ojos en el manto de invisibilidad sería claramente visible desde el exterior. Si Harry Potter fuera invisible se encontraría ciego bajo su manto de invisibilidad. (Una posible solución a este problema sería insertar dos minúsculas placas de vidrio cerca de la posición de los agujeros para los ojos. Estas placas de vidrio actuarían como «divisores de haz», que dividen una minúscula porción de la luz que incide en las placas y luego envía a luz a los ojos. De este modo, la mayor parte de la luz que incidiera en el manto fluiría a su alrededor, haciendo a la persona invisible, pero una minúscula cantidad de luz sería desviada hacia los ojos).

Por terribles que sean estas dificultadas, científicos e ingenieros son optimistas en que algún tipo de manto de invisibilidad pueda construirse en las próximas décadas.

Invisibilidad y nanotecnología

Como he mencionado antes, la clave para la invisibilidad puede estar en la nanotecnología, es decir, la capacidad de manipular estructuras de tamaño atómico de una mil millonésima de metro.

El nacimiento de la nanotecnología data de una famosa conferencia de 1959 impartida por el premio Nobel Richard Feynman ante la Sociedad Americana de Física, con el irónico título «Hay mucho sitio al fondo». En dicha conferencia especulaba sobre lo que podrían parecer las máquinas más pequeñas compatibles con las leyes de la física conocidas. Feynman era consciente de que podían construirse máquinas cada vez más pequeñas hasta llegar a distancias atómicas, y entonces podrían utilizarse los átomos para crear otras máquinas.

Richard Feynman.

Máquinas atómicas, tales como poleas, palancas y ruedas, estaban dentro de las leyes de la física, concluía él, aunque serían extraordinariamente difíciles de hacer.

La nanotecnología languideció durante años porque manipular átomos individuales estaba más allá de la tecnología de la época. Pero en 1981 los físicos hicieron un gran avance con la invención del microscopio de efecto túnel, que les valió el premio Nobel de Física a los científicos Gerd Binning y Heinrich Rohrer que trabajaban en el Laboratorio IBM en Zurich.

De repente, los físicos podían obtener sorprendentes «imágenes» de átomos individuales dispuestos como se presentan en los libros de química, algo que los críticos de la teoría atómica consideraban imposible en otro tiempo. Ahora era posible obtener magníficas fotografías de átomos alineados en un cristal o un metal. Las fórmulas químicas utilizadas por los científicos, con una serie compleja de átomos empaquetados en una molécula, podían verse a simple vista. Además, el microscopio de efecto túnel hizo posible la manipulación de átomos individuales.

Logo de la empresa IBM escrito con átomos.

De hecho, se escribieron las letras «IBM» tomando átomos de uno en uno, lo que causó sensación en el mundo científico. Los científicos ya no iban a ciegas cuando manipulaban átomos individuales, sino que realmente podían verlos y jugar con ellos.

El microscopio de efecto túnel es engañosamente simple. Como una aguja de fonógrafo que explora un disco, una sonda aguda pasa lentamente sobre el material a analizar. (La punta es tan aguda que consiste en un solo átomo). Una pequeña carga eléctrica se coloca en la sonda, y una corriente fluye desde la sonda, a través del material, hasta la superficie que hay debajo.

Secuencia de movimientos para el diseño del Logo.

La sonda es también suficientemente sensible para mover átomos individuales y crear «máquinas » sencillas a partir de átomos individuales. La tecnología está ahora tan avanzada que puede mostrarse un racimo de átomos en una pantalla de ordenador, y entonces, moviendo simplemente el cursor del ordenador, los átomos pueden moverse en la dirección que uno quiera. Se pueden manipular montones de átomos a voluntad, como si se estuviera jugando con bloques Lego.

Además de formar las letras del alfabeto utilizando átomos individuales, se pueden crear asimismo juguetes atómicos, tales como un ábaco hecho de átomos individuales.

Los átomos están dispuestos en una superficie con ranuras verticales. Dentro de estas ranuras verticales se pueden insertar buckybolas de carbono (que tienen la forma de un balón de fútbol, pero están hechas de átomos de carbono individuales). Estas bolas de carbono pueden moverse entonces arriba y abajo en cada ranura, con lo que se tiene un ábaco atómico. También es posible grabar dispositivos atómicos utilizando haces de electrones. Por ejemplo, científicos de la Universidad de Cornell han hecho la guitarra más pequeña del mundo, veinte veces más pequeña que un cabello humano, grabada en silicio cristalino. Tiene seis cuerdas, cada una de 100 átomos de grosor, y las cuerdas pueden ser pulsadas utilizando un microscopio de fuerzas atómicas. (Esta guitarra producirá música realmente, pero las frecuencias que produce están muy por encima del rango de audición humana).

De momento, la mayoría de estas «máquinas» nanotech son meros juguetes. Aún están por crear máquinas más complicadas con engranajes y cojinetes. Pero muchos ingenieros confían en que no está lejos el tiempo en que seremos capaces de producir verdaderas máquinas atómicas. (Las máquinas atómicas se encuentran realmente en la naturaleza. Las células pueden nadar libremente en el agua porque pueden agitar pelos minúsculos. Pero cuando se analiza la juntura entre el pelo y la célula se ve que es realmente una máquina atómica que permite que el pelo se mueva en todas direcciones. Así, una clave para desarrollar la nanotecnología es copiar a la naturaleza, que dominó el arte de las máquinas atómicas hace miles de millones de años).

Hologramas e Invisibilidad

Otra manera de hacer a una persona parcialmente invisible es fotografiar el escenario que hay detrás de ella y luego proyectar directamente esa imagen de fondo en la ropa de la persona o en una pantalla que lleve delante. Vista de frente parece que la persona se haya hecho transparente, que la luz haya atravesado de alguna manera su cuerpo.

«Se utilizaría para ayudar a los pilotos a ver a través del suelo de la cabina en una pista de aterrizaje, o a los conductores que tratan de ver a través de una valla para aparcar un automóvil». Una videocámara fotografía lo que hay detrás del manto. Luego esta imagen se introduce en un proyector de vídeo que ilumina la parte frontal del manto, de modo que parece que la luz ha pasado a través de la persona.

Prototipos del manto de camuflaje óptico existen realmente en el laboratorio. Si miramos directamente a una persona que lleve este manto tipo pantalla, parece que haya desaparecido, porque todo lo que vemos es una imagen de lo que hay tras la persona. Pero si movemos un poco los ojos, la imagen en el manto no cambia, lo que nos dice que es un fraude. Un camuflaje óptico más realista necesitaría crear la ilusión de una imagen 3D.

Esquema de un holograma.

Para ello se necesitarían hologramas. Un holograma es una imagen 3D creada mediante láseres (como la imagen 3D de la princesa Leia en La guerra de las galaxias). Una persona podría hacerse invisible si el escenario de fondo fuera fotografiado con una cámara holográfica especial y la imagen holográfica fuera luego proyectada a través de una pantalla holográfica especial colocada delante de la persona.

Alguien que estuviera enfrente de la persona vería la pantalla holográfica, que contiene la imagen 3D del escenario de fondo, menos la persona. Parecería que la persona había desaparecido. En lugar de dicha persona habría una imagen 3D precisa del escenario de fondo. Incluso si se movieran los ojos no se podría decir que lo que se estaba viendo era un fraude.

Estas imágenes 3D son posibles porque la luz láser es «coherente», es decir, todas las ondas están vibrando perfectamente al unísono. Los hologramas se generan haciendo que un haz láser coherente se divida en dos partes. La mitad del haz incide en una película fotográfica. La otra mitad ilumina un objeto, rebota en este y luego incide en la misma película fotográfica. Cuando estos dos haces interfieren en la película se crea una figura de interferencia que codifica toda la información que hay en la onda 3D original.

Cuando se revela la película, no dice mucho; es algo parecido a una intrincada figura de tela de araña con remolinos y líneas. Pero cuando se permite que un haz láser incida en esta película, súbitamente aparece como por arte de magia una réplica 3D exacta del objeto original. No obstante, los problemas técnicos que plantea la invisibilidad holográfica son formidables.

Un reto es crear una cámara holográfica que sea capaz de tomar al menos 50 fotogramas por segundo. Otro problema es almacenar y procesar toda la información. Finalmente, habría que proyectar esta imagen en una pantalla de modo que la imagen pareciera realista.

Invisibilidad vía la cuarta dimensión

Deberíamos mencionar también que una manera aún más sofisticada de hacerse invisible era mencionada por H. G. Wells en El hombre invisible, e implicaba utilizar el poder de la cuarta dimensión.

¿Sería posible salir de nuestro universo tridimensional y cernirnos sobre él, desde el punto de vista de una cuarta dimensión?

Como una mariposa tridimensional que se cierne sobre una hoja de papel bidimensional, seríamos invisibles a cualquiera que viviera en el universo por debajo de nosotros.

Un problema con esta idea es que todavía no se ha demostrado que existan dimensiones más altas. Además, un viaje hipotético a una dimensión más alta requeriría energías mucho más allá de cualquiera alcanzable con  nuestra tecnología actual. Como forma viable de crear invisibilidad, este método está claramente más allá de nuestro conocimiento y nuestra capacidad actuales.

Hasta la vista…. Si acaso me vuelven a ver… 

Las tecnologías actuales han logrado grandes avances pero aun no son lo suficientemente avanzadas como para crear una forma de invisibilidad carente de fallas. En las próximas décadas, o al menos dentro de este siglo, una forma de invisibilidad puede llegar a ser realidad. Dentro de un tiempo ya existirán las mantas de la invisibilidad como la que utiliza Harry Potter, aunque yo sigo prefiriendo el Anillo Único. 

Esta entrada participa en la XXXIX Edición del Carnaval de la Física, que esta siendo organizado en esta ocasión por el blog El zombi de Schrödinger. ]

Referencias |

 

Anuncios

El protón es mas pequeño de lo que pensábamos

No es nada fácil medir el radio de un protón, porque los quarks que lo componen no dejan de interaccionar. Aun así, la comunidad científica ha fijado unos valores con los datos de complicados métodos de medición, pero los resultados difieren si se usan otras técnicas. Un equipo europeo ya apuntó hace unos años que el protón es más pequeño de lo establecido y ahora lo vuelve a confirmar con un nuevo estudio que publica Science.

El electrón es una partícula como un punto, cuyo tamaño se ha medido en menos de 10-20 m, pero el protón, por el contrario, es una partícula compuesta de otras más pequeñas y fundamentales: los quarks”, recuerda Aldo Antognini, del Instituto Max Planck de Óptica Cuántica (Garching, Alemania).

“Los quarks –dos up y un down por cada protón– se mueven e interactúan de forma muy dinámica entre ellos y el torbellino que forman es el que da lugar al tamaño del protón”, explica el investigador.

Antognini y otros colegas europeos y de EE UU presentan esta semana en Science un estudio que señala que el protón es más pequeño de lo que se cree. Los resultados  confirman lo que el mismo equipo ya publicó en Nature en 2010: “El protón parece ser 0,00000000000003 milímetros menor de lo que pensaban los investigadores”.

En concreto, el denominado Committee on Data for Science and Technology (CODATA) establece un radio de carga para el protón de entre 0,87 y 0,88 femtómetros (1 femtómetro son 10-15 m), mientras que los nuevos resultados lo reducen a 0,84 femtómetros. El radio de carga eléctrica es la extensión media de la ‘nube’ que generan los quarks –que están cargados– al moverse.

Las diferencias parecen insignificantes, pero puede tener repercusiones físicas “serias”, según los expertos, ya que sugieren que quizá  haya un vacío en las teorías actuales de la mecánica cuántica. Además, los protones, junto a los neutrones, forman el núcleo atómico de cada átomo que existe en el universo.

El estudio también determina por primera vez el radio magnético del protón –0,87  femtómetros–. Este otro radio es la media de la distribución magnética dentro del protón, que viene dada por los momentos magnéticos de los quarks y las corrientes que producen al moverse.

Para llevar a cabo esta investigación, el equipo ha empleado la espectroscopia láser del hidrógeno muónico. El hidrógeno es el elemento más simple que existe, con un protón y un electrón, aunque en el experimento se sustituye este último por un muón –con carga negativa como el electrón pero con una masa 200 veces superior–.

De esta forma se puede medir mejor el protón, analizando determinadas transiciones que se producen en los estados de este hidrógeno ‘exótico’. Antognini ha adelantado a SINC que su grupo tiene previsto investigar también con átomos de helio muónico.

Por su parte, los valores establecidos por CODATA se basan en otras técnicas: espectroscópica del átomo de hidrogeno –el normal, no muónico– y cálculos de electrodinámica cuántica (QED, por sus siglas en inglés) para analizar la dispersión de carga entre el protón y el electrón.

Algunos investigadores consideran que la interpretación de los resultados de cada método de medición puede estar detrás de las discrepancias. En cualquier caso, los científicos siguen debatiendo cuál de todas estas técnicas es la mejor para encajar las piezas del denominado ‘puzle del radio del protón”.

El objetivo final, descubrir el tamaño exacto de esta partícula esencial en el funcionamiento del cosmos.

Los átomos en los que un electrón está reemplazado por un muón (electrón muónico) se conocen como átomos muónicos. El muón es parecido al electrón en que tiene su misma carga negativa pero con una masa 200 veces superior.

Con un protón y un electrón se construye el átomo más ligero que existe, el hidrógeno  Si se sustituye el electrón del átomo de hidrógeno por un muón se obtiene el hidrógeno muónico. Qué importancia tiene esta sustitución?. Pues sirve para obtener las dimensiones del protón y en consecuencia las dimensiones de todo el cosmos.

El protón puede considerarse como el ladrillo fundamental de la construcción de todo el universo. Pero muchas de sus propiedades, su tamaño y su momento magnético anómalo no están muy bien comprendidas. Para determinar el tamaño del protón, se considera como si todo su carga estuviera concentrada en una esfera de radio rp. Y para medir este radio se ha utilizado la interacción del electrón con el protón. Hasta hace poco las medidas más precisas sobre el radio del protón están dadas por la compilación de las constantes físicas CODATA. Se basan en la aplicación de las medidas espectroscópicas del átomo de hidrógeno junto con los cálculos de la electrodinámica cuántica (QED) del estado fundamental del hidrógeno  El valor es 0,8768(69)·10-15 m que indicamos por 0,8768(69) fm, donde fm indica fentometros, una abreviación para 10-15 m.

En 1913 Niels Bohr presentó una teoría del átomo de hidrógeno partiendo de un principio clásico pero introduciendo la característica de que el momento cinético esta cuantificado, esto quiere decir que es igual a h/2π, donde h es la constante de Planck.

Partiendo de la mecánica Newtoniana, el electrón gira en torno del protón con una velocidad v y se encuentra sometido a la fuerza de atracción eléctrica, esto determina el tamaño del átomo de hidrógeno.

La condición cuántica sobre el momento cinético indica lo siguiente

Juntando las dos ecuaciones obtenemos el radio del átomo de hidrógeno RH

A partir de aquí Bohr fue capaz de explicar el espectro del átomo de hidrógeno. La teoría coincidía plenamente con la experiencia. La condición cuántica era extraña en la física clásica pero daba resultados. Hay que decir que esta teoría planetaria de los átomos no se debe aceptar, está muy equivocada. El hecho de que de buenos resultados en el átomo de hidrogeno es una casualidad. Esta casualidad hizo posible que Bohr se animara a continuar por este camino cuántico e impulsara a los demás a crear una teoría cuántica de los átomos.

El desarrollo de la física avanzó rápidamente a partir de estos descubrimientos hasta llegar a dos teorías matemáticas de la física cuántica: la mecánica matricial de  Werner Heisenberg en 1925 y la mecánica ondulatoria de Erwin Schrödinger en 1926. Poco más tarde el propio Schrödinger demostró que tanto la visión matricial como la ondulatoria eran una misma teoría pero vestidas con matemáticas diferentes.

Pues bien, volvamos al radio del átomo de hidrógeno  comprobaremos que es inversamente proporcional a la masa del electrón. Esta es la clave para estudiar al protón y aquí es donde entra en juego el muón (µ) que es 206 veces más masivo que el electrón. A partir de los datos de CODATA:

Si en lugar de observar el espectro del átomo de hidrógeno (protón + electrón) podemos observar el espectro del hidrógeno muónico (protón + muón), el radio del hidrógeno muónico será unas 206 veces menor y por tanto la interacción muón-protón será mucho mayor y más precisa. La longitud de onda también es inversamente proporcional a la masa y por tanto la longitud de onda del muón es 206 veces más pequeña que la del electrón.

Esto significa que la función de onda del muón se superpone con la del protón (206)3 » 10veces más que la del electrón en el átomo de hidrógeno  Así pues, el muón en el hidrógeno muónico se encuentra 206 veces más cerca del protón y además las medidas son mucho más precisas que con el electrón, por tanto se pueden obtener mejores resultados sobre el tamaño del protón. Las siguientes imágenes intentan ilustrar este parágrafo.

Átomo de hidrógeno

Hidrógeno muonico

Este experimento lo realizo un grupo de 32 científicos presididos por Randolf Pohl en el Instituto de Óptica Cuántica Max Plank. La idea es medir el salto energético entre dos niveles cuánticos, los cálculos dan:

El primer término de la ecuación es debido a la polarización del vacío, el segundo y tercer término son las contribuciones al tamaño finito del protón.

Utilizando un láser pulsante, el equipo mesuro los niveles de energía del hidrógeno muónico y los resultados experimentales dan el siguiente resultado:

Sustituyendo en los cálculos se obtiene el siguiente valor para el radio del protón rp = 0.84184 (36) fm. Así pues, parece que el protón es 0.00000000000003 milímetros más pequeño, cerca de un 4% menor que los últimos experimentos. La diferencia es infinitesimal, pero los protones son las partículas más comunes y junto a los neutrones forman el núcleo atómico de cada átomo del universo. Parece como un pequeño punto de carga positiva. Pero en sus entrañas es mucho más complejo, cada protón está formado por partículas fundamentales denominadas quarks.

Les explico a continuación como el protón puede considerarse el ladrillo fundamental de la construcción cósmica. No hay duda que la fuerza principal del Universo es la fuerza gravitatoria, podemos ponerla en relación con la otra fuerza fundamental, la electromagnética.

Para realizar la comprobación utilizamos dos protones. La fuerza de atracción gravitatoria entre dos protones es 10-36 veces menor que la fuerza eléctrica de repulsión. Por eso en física atómica se ignoran los efectos gravitatorios. Pero la fuerza de gravedad siempre tiene el mismo signo negativo, es  de atracción. En cambio la fuerza eléctrica puede ser de atracción y repulsión, dependiendo de los signos de las cargas, positiva o negativa.

En un cuerpo macroscópico las fuerzas de atracción y repulsión eléctricas pueden cancelarse y quedara solamente la fuerza de atracción gravitatoria, que puede llegar a ser muy importante para cuerpos masivos. Es el caso de los planetas, estrellas y cúmulos globulares.

La energía gravitacional de una partícula orbitando un objeto de masa M a una distancia r depende de M/r. Si tenemos N átomos juntos formando una esfera, la masa M de esta esfera hipotética será proporcional a N y por tanto la energía será proporcional a N/r. Puesto que es una esfera el radio será proporcional a N1/3, recuerden que el volumen de una esfera es proporcional al cubo de su radio y el volumen es proporcional a N.

Entonces la energía es proporcional a N/N1/3 = N2/3 . A medida que la cantidad de átomos aumenta, la fuerza de la gravedad va aumentando. Por cada 1000 átomos la energía gravitatoria aumenta un factor 100. Así pues, tenemos que la cantidad de átomos N será proporcional a la energía gravitatoria

Cuando N sea mayor que

la fuerza de la gravedad será dominante. Este simple argumento nos da una idea de porque las estrellas son tan masivas. Un objeto que contiene más de 1054 átomos de hidrógeno o protones (esto es 2·1027 kg) se comprimirá por el efecto de la fuerza de atracción gravitatoria, hasta que se enciende la fusión termonuclear en su centro y esta energía compensa el colapso gravitacional. Por ejemplo, Júpiter tiene una masa de 1,899·1027 kg, por poco no se convierte en una estrella.

Pero si la cantidad de protones es superior a 1057 no hay ninguna fuerza que pueda compensar el colapso gravitatorio y se forma un agujero negro.

Estas y otras relaciones numéricas se muestran en el siguiente diagrama. En vertical la masa de un objeto respecto la masa del protón y en horizontal el radio del objeto respecto el radio del protón en escala logarítmica.

La colaboración internacional
Este proyecto es el fruto del esfuerzo de colaboración entre científicos de 32 instituciones diferentes en los distintos países.Algunas de las contribuciones más importantes incluyen:
– El Laboratorio Kastler Brossel (ENS París / UPMC / CNRS) de Francia.
– El Instituto Max-Planck de Óptica Cuántica en Alemania.
– El Instituto Paul Scherrer (PSI), el Instituto de Física de Partículas del Instituto Federal de Tecnología de Zurich y el Departamento de Física de la Universidad de Friburgo en Suiza.
– El Departamento de Física de la Universidad de Coimbra y Aveiro en Portugal,
– El Instituto für Strahlwerkzeuge y Dausinger y Giesen GmbH en Stuttgart, Alemania.

 INFORMACIÓN ADICIONAL: http://www.nature.com/news/shrunken-proton-baffles-scientists-1.12289

¿Qué es un agujero negro?

Lo que muchas personas imaginan cuando se les habla de un Agujero Negro es que es un gran “hoyo” en el espacio por el cual entran cuerpos que nunca salen debido a que este “hoyo” tiene una profundidad indefinida o infinita… Esa idea no esta tan lejos de la realidad, solo que deben de corregirse algunos detalles que aquí veremos…

Para entender lo que es un agujero negro empecemos por una estrella como el Sol. El Sol tiene un diámetro de 1.390.000 kilómetros y una masa 330.000 veces superior a la de la Tierra. Teniendo en cuenta esa masa y la distancia de la superficie al centro se demuestra que cualquier objeto colocado sobre la superficie del Sol estaría sometido a una atracción gravitatoria 28 veces superior a la gravedad terrestre en la superficie.

Una estrella corriente conserva su tamaño normal gracias al equilibrio entre una altísima temperatura central, que tiende a expandir la sustancia estelar, y la gigantesca atracción gravitatoria, que tiende a contraerla y estrujarla.

Si en un momento dado la temperatura interna desciende, la gravitación se hará dueña de la situación. La estrella comienza a contraerse y a lo largo de ese proceso la estructura atómica del interior se desintegra. En lugar de átomos habrá ahora electrones, protones y neutrones sueltos. La estrella sigue contrayéndose hasta el momento en que la repulsión mutua de los electrones contrarresta cualquier contracción ulterior.

La estrella es ahora una «enana blanca». Si una estrella como el Sol sufriera este colapso que conduce al estado de enana blanca, toda su masa quedaría reducida a una esfera de unos 16.000 kilómetros de diámetro, y su gravedad superficial (con la misma masa pero a una distancia mucho menor del centro) sería 210.000 veces superior a la de la Tierra.

En determinadas condiciones la atracción gravitatoria se hace demasiado fuerte para ser contrarrestada por la repulsión electrónica. La estrella se contrae de nuevo, obligando a los electrones y protones a combinarse para formar neutrones y forzando también a estos últimos a apelotonarse en estrecho contacto. La estructura neutrónica contrarresta entonces cualquier ulterior contracción y lo que tenemos es una «estrella de neutrones», que podría albergar toda la masa de nuestro sol en una esfera de sólo 16 kilómetros de diámetro. La gravedad superficial sería 210.000.000.000 veces superior a la que tenemos en la Tierra.

En ciertas condiciones, la gravitación puede superar incluso la resistencia de la estructura neutrónica. En ese caso ya no hay nada que pueda oponerse al colapso. La estrella puede contraerse hasta un volumen cero y la gravedad superficial aumentar hacia el infinito.

Según la teoría de la relatividad, la luz emitida por una estrella pierde algo de su energía al avanzar contra el campo gravitatorio de la estrella. Cuanto más intenso es el campo, tanto mayor es la pérdida de energía, lo cual ha sido comprobado experimentalmente en el espacio y en el laboratorio.

La luz se pierde en un agujero negro

La luz emitida por una estrella ordinaria como el Sol pierde muy poca energía. La emitida por una enana blanca, algo más; y la emitida por una estrella de neutrones aún más. A lo largo del proceso de colapso de la estrella de neutrones llega un momento en que la luz que emana de la superficie pierde toda su energía y no puede escapar. Por eso es que se dice que ni la luz puede escapar de la fuerza gravitacional de un agujero negro.

Un objeto sometido a una compresión mayor que la de las estrellas de neutrones tendría un campo gravitatorio tan intenso, que cualquier cosa que se aproximara a él quedaría atrapada y no podría volver a salir. Es como si el objeto atrapado hubiera caído en un agujero infinitamente hondo y no cesase nunca de caer. Y como ni siquiera la luz puede escapar, el objeto comprimido será negro. Literalmente, un «agujero negro». 

Entonces podemos resumir que un agujero negro, no es un agujero, es una estrella que tiene un campo gravitatorio tan grande que nada que este cerca de ella puede salir de su superficie, ni siquiera la luz, por tanto es un objeto comprimido completamente negro.

Hoy día los astrónomos están encontrando pruebas de la existencia de agujeros negros en distintos lugares del universo…

Y mas recientemente es mas que probable que exista un agujero negro supermasivo en el centro de todas las galaxias que conocemos… Incluida la vía Lactea

El cronómetro más preciso del mundo muy cerca

Las colisiones de iones pesados producidas en el CERN deberían poder generar los pulsos de luz más cortos que se hayan creado. Así se desprende de los resultados obtenidos mediante simulaciones por ordenador en la Universidad Tecnológica de Viena, en Austria. Esos pulsos son tan cortos que las tecnologías actuales no pueden medirlos. Ahora, se ha propuesto un método para crear el cronómetro más preciso del mundo para los pulsos de luz más cortos del mundo.

Los fenómenos que se producen a escalas de tiempo muy pequeñas frecuentemente se investigan mediante pulsos de láser ultracortos. Hoy en día, se pueden crear pulsos que duran algunos attosegundos. Un attosegundo es una trillonésima de segundo, ó 0,000000000000000001 segundos.

Sin embargo, esa capacidad pronto resultará insuficiente. Los núcleos atómicos en aceleradores de partículas como el LHC en el CERN pueden crear pulsos de luz un millón de veces más cortos.

En el experimento ALICE en el CERN, núcleos de plomo colisionan casi a la velocidad de la luz. Los restos de los núcleos desperdigados junto con nuevas partículas creadas por la energía del impacto forman un plasma de quarks-gluones, un estado de la materia que es tan caliente que incluso los protones y neutrones se disgregan. Sus elementos constituyentes (quarks y gluones) pueden moverse independientemente, sin estar enlazados unos a otros. Este plasma de quarks-gluones sólo existe durante varios yoctosegundos. Un yoctosegundo es una millonésima de attosegundo.

El plasma de quarks-gluones creado en un acelerador de partículas puede emitir pulsos de luz que contienen información valiosa sobre el plasma. Sin embargo, las técnicas convencionales de medición son demasiado lentas para estos fogonazos ultracortos.

A fin de solucionar el problema, el equipo de Andreas Ipp de la Universidad Tecnológica de Viena ha recurrido al efecto de Hanbury Brown y Twiss, una estrategia que se ideó originalmente para mediciones astronómicas. El nombre del efecto deriva de los de Hanbury Brown (1916-2002) y Richard Quentin Twiss (1920-2005).

En un experimento basado en el efecto de Hanbury Brown y Twiss, se estudian las correlaciones entre dos detectores de luz diferentes. De ese modo, se puede calcular con mucha precisión el diámetro de una estrella. Aparte de para estudiar distancias espaciales, el efecto también puede ser utilizado para medir intervalos de tiempo, tal como recalca Andreas Ipp. Los cálculos que él hizo junto a Peter Somkuti muestran que los pulsos del orden de los yoctosegundos emitidos por el plasma de quarks-gluones pueden ser determinados por un experimento basado en el citado efecto. Este experimento no requeriría costosos detectores adicionales, ya que podría hacerse con un detector que ya está previsto que entre en servicio a finales de esta década en el CERN.

De esa manera, el experimento ALICE podría convertirse en el cronómetro más preciso del mundo.

INFORMACION ADICIONAL: http://www.tuwien.ac.at/en/news/news_detail/article/7842/

El campo magnético terrestre colabora en la degradación de la capa de ozono

La interacción del campo magnético terrestre con sustancias químicas contaminantes podría explicar la presencia de estas sustancias en las zonas polares, donde hoy se registra el mayor deterioro de la capa de ozono, según un estudio de la Universidad Autónoma de Madrid, en España.

Año tras año la capa de ozono se reduce en las zonas polares. Como causa de este fenómeno los científicos han identificado en dichas zonas la presencia de óxidos de nitrógeno, átomos de cloro y radicales monóxido, entre otras especies químicas que participan como sustancias intermedias en reacciones en cadena de degradación de las moléculas de ozono. Se sabe que el origen de estas especies químicas se encuentra en muchos productos y combustibles utilizados especialmente en las zonas más pobladas y desarrolladas del planeta, pero hasta ahora no se ha constatado cuál es el mecanismo que las transporta hasta las zonas polares. 

Una reciente investigación —publicada en la revista Green and Sustainable Chemistry por Jaime González Velasco, Catedrático de Química Física y Electro química de la Universidad Autónoma de Madrid (UAM)— ofrece nuevos elementos para explicar la presencia en las zonas polares de las especies químicas que degradan esa capa que en la tierra funciona como filtro de las radiaciones ultravioleta.

En su trabajo, González Velasco encuentra que el motor de este mecanismo son las propias características magnéticas de las especies químicas. En concreto, resalta la distinción entre sustancias diamagnéticas y sustancias paramagnéticas. Esta distinción es la que permite entender que, en un campo magnético, unas sustancias —las paramagnéticas— sean atraídas hacia la región donde el campo es más intenso, mientras que otras —las diamagnéticas— sean atraídas hacia la región donde el campo es más débil.

 

En base a esto el autor argumenta que, en el campo magnético terrestre, las moléculas de oxígeno, al ser paramagnéticas, serían dirigidas hacia los polos, donde la intensidad del campo es máxima. Por el contrario, las moléculas de ozono, al ser diamagnéticas, serían transportadas por el campo magnético terrestre hacia zonas en las que su intensidad es mínima, es decir, hacia las zonas tropicales y ecuatoriales.

Para el investigador, el que las moléculas de oxígeno sean paramagnéticas y las de ozono diamagnéticas, podría explicar también la reducción anormal que cada año sufre la capa de ozono durante las estaciones de primavera y su consiguiente recuperación durante las estaciones de verano. De hecho, el catedrático propone un mecanismo que explica estos ciclos anuales de degradación-recuperación.

La degradación de la capa de ozono no tiene lugar en las zonas templadas de los hemisferios norte y sur de la tierra, que es donde se acumula la mayor concentración de población contaminante. Puesto que la degradación aparece en latitudes polares, los científicos han concluido que debe existir un mecanismo de transporte hacia esas latitudes que explique la presencia de los átomos de cloro, óxidos de nitrógeno y demás sustancias que actúan en la destrucción de la capa ozono.

Otro indicio importante de este mecanismo, es el hecho de que la degradación de la capa de ozono se produce en primavera, que es cuando comienzan a llegar fotones a las zonas polares, los cuales inducen los procesos fotoquímicos necesarios para que se produzca la desaparición de las moléculas de ozono.

Además, el agujero de la capa de ozono que aparece en las latitudes australes suele ser de mayor magnitud que el que se produce en las zonas boreales, pese a que es en el hemisferio norte donde se produce la mayor acumulación de actividades industriales y de tráfico de diversos tipos de vehículos responsables de la generación de óxidos de nitrógeno.

Como mecanismos de transporte de las especies degradantes se ha recurrido hasta el momento a considerar como responsables a los vientos dominantes a diversas alturas de la atmósfera, que generan corrientes capaces de llevar hasta los polos las moléculas, átomos y radicales perjudiciales.

No obstante, bajo esta teoría quedan sin explicación muchas cuestiones, como la distribución de concentraciones de óxidos de nitrógeno a diversas alturas de la atmósfera. Pero eso en un futuro muy corto lo podremos conocer…

Fuerzas magnéticas sin imanes

Los imanes se han convertido prácticamente en objetos cotidianos. Antes, sin embargo, el universo consistía solamente de elementos magnéticos y las partículas.

Como las fuerzas magnéticas llegaron a existir, es lo que ha sido investigado por el Prof. Dr. Reinhard Schlickeiser en el Instituto de Física Teórica de la Universidad del Ruhr en Bochum.

El cual describe un nuevo mecanismo para la magnetización del universo, incluso antes de la aparición de las primeras estrellas.

No hay imanes permanentes en los inicios del universo.

Antes de la formación de las primeras estrellas, la materia luminosa consistía sólo en un gas ionizado completamente de protones, electrones, núcleos de helio y núcleos de litio que se produjeron durante el Big Bang.

Todos los metales grandes y pesados, por ejemplo, hierro magnético, según la concepción de hoy sólo se forman en el interior de las estrellas. Por tanto aun no existían.

En los primeros tiempos, por lo tanto, no hubo imanes permanentes en el Universo. Los parámetros que describen el estado de un gas son, sin embargo, no constantes. Los campos de densidad y la presión, así como eléctricos y magnéticos fluctúan alrededor de los valores medios determinados. Como resultado de esta fluctuación, en ciertos puntos en el plasma campos magnéticos débiles formando los llamados campos aleatorios.

¿Qué tan fuertes estos campos se encuentran en un plasma ionizado por completo de protones y electrones? es lo que ha sido calculado por el Prof. Schlickeiser, específicamente para las densidades de gases y temperaturas que se produjeron en los plasmas de los inicios del universo. Arrojando como resultado:

Débiles campos magnéticos con grandes volúmenes…!!


El resultado: los campos magnéticos fluctúan en función de su posición en el plasma, sin embargo, independientemente del tiempo – a diferencia de, por ejemplo, ondas electromagnéticas, como las ondas de luz, que pueden fluctuar en el tiempo. En todo el gas luminoso del universo temprano había un campo magnético con una intensidad de 10 ^ -20 Tesla. Por comparación, el campo magnético de la Tierra tiene una resistencia de 30 millonésimas de Tesla. En los escáneres de resonancia magnética, las intensidades de campo de 3 Tesla son ahora habituales. El campo magnético en el plasma del universo temprano era, pues, muy débil, pero se cubre casi el 100 por ciento del volumen de plasma.

Interacción de ondas de choque térmico y los campos magnéticos.

Los vientos estelares y explosiones de supernovas de las estrellas masivas generan por primera vez ondas de choque que comprimen los campos magnéticos al azar en ciertas áreas. De esta manera, los campos se reforzaron y alineados en una gran escala. En última instancia, la fuerza magnética era tan fuerte que a su vez influyó en las ondas de choque. “Esto explica el saldo observado a menudo entre las fuerzas magnéticas y la presión de gas térmico de los objetos cósmicos”, según los estudios del profesor Schlickeiser. Los cálculos muestran que todos los gases ionizados por completo en el universo temprano se magnetiza débilmente. Los campos magnéticos por lo tanto, existía incluso antes de que las primeras estrellas.

Medir con láseres la estructura interna de átomos sin distorsionarla

El mejor método para obtener la información más precisa sobre la estructura interna de átomos y moléculas es excitarlos por medio de una luz láser resonante. Por desgracia, esta luz láser, cuando supera cierta intensidad, puede dar lugar a modificaciones significativas dentro de la envoltura de electrones del átomo, de modo que el mero acto de hacer una medición puede introducir una distorsión en la misma.

Ahora, científicos de la Universidad Técnica Estatal de Rusia y Novosibirsk, el Instituto de Física Láser de Novosibirsk y la Universidad Estatal de Novosibirsk, todas estas instituciones en Rusia, así como el Instituto Nacional de Metrología en Alemania (PTB), han demostrado experimentalmente cómo evitar tal distorsión ejercida por la luz láser.

Esa distorsión se produce cuando la intensa luz láser modifica la posición de los niveles de energía atómicos. El desplazamiento depende de la intensidad y la longitud de onda del láser utilizado. Si el propósito de una observación es determinar las propiedades del átomo como un objeto cuántico no perturbado, este desplazamiento debe prevenirse o corregirse. Con el nuevo procedimiento, que se ha aplicado experimentalmente por primera vez en el PTB, una secuencia de pulsos láser cuidadosamente seleccionada para excitar al átomo elimina la citada distorsión.

La idea básica de la utilización de la radiación pulsante para efectuar mediciones de muy alta precisión se remonta a Norman Ramsey, quien fue galardonado con un Premio Nobel de Física en 1989 por este descubrimiento.

El nuevo método basado en una versión avanzada del concepto introducido por Ramsey puede también ser el primer paso hacia un notable aumento de precisión en algunos relojes atómicos, así como ser de utilidad para numerosas aplicaciones en las que resulte fundamental lograr una interacción precisa y controlada entre los átomos y la luz láser.

INFORMACIÓN ADICIONAL: http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2012/pitext/pi121122.html