Archivo de la categoría: E = mc^2

La Teletransportación: ¿Realidad o ficción?

¿Quien no ha llegado tarde alguna vez a una cita importante?, puedo asegurar que usted amable lector al igual que yo hemos asistido tarde al colegio, la universidad, el trabajo, etc., etc., etc., y muchos etcéteras mas, el ritmo de vida que todos llevamos en esta sociedad nos ha obligado a “movernos rápido”, todos tenemos muchas cosas que hacer durante el día (que cada vez nos parece mas corto) y para poder cumplir con todo lo que debemos, siempre nos encontramos viajando de un lugar a otro lo mas rápido posible, para ello recurrimos a varios medios de transporte como lo son: las bicicletas, automóviles, motocicletas, autobuses, trenes, barcos y aviones.

Pero la mente humana se ha encargado de abrir nuevas vías,  que sean mucho mas rápidas y de ser posibles instantáneas para que de esa manera tengamos un poco mas de tiempo para cumplir con nuestro trajín diario. Y es en ese instante que aparece en escena la Teletransportación. 

¿Pero qué tal si pudiésemos reemplazar ese “movernos rápido” por un “movernos instantáneamente”?

ORIGEN DEL TERMINO 

Literalmente Teletransportación quiere decir: “desplazar a distancia”. Lo cual nosotros entendemos como un desplazamiento que se produce sin necesidad de establecer contacto físico directamente con el objeto para que este se mueva. 

El termino “Teletransportación”, fue acuñado en el año 1930 por un reconocido investigador y escritor de la época, un tal Charles Fort de origen estadounidense, quien se dedicaba al estudio de los hechos que la ciencia de la época no podía solucionar.

Fort utilizo esa palabra para describir una supuesta conexión entre unas misteriosas desapariciones y apariciones que sucedían en varias partes del mundo. 

TELETRANSPORTACIÓN Y CIENCIA FICCIÓN

Si se descubriera la forma de transportar al instante a una persona o un objeto de un lugar a otro, seria sin lugar a duda una tecnología que cambiara el curso de toda nuestra civilización. Aunque todos los medios de transporte (las industrias que sirven y en las que se basan dichos sistemas) que actualmente son utilizados serian completamente obsoletos.

Imagínese un día normal, la alarma de su smartphone no funciono, se despierta tarde, se levanta y se viste lo mas rápido que puede, apenas si se acomoda el cabello (si es que lo tiene), engulle a toda prisa una rebana de pan tostado y bebe un sorbo de su taza de café, pero espere… usted no tiene que conducir al trabajo, simplemente se sienta en su sillón y presiona un botón e instantáneamente se encontrara sentado en la silla de su oficina, frente al ordenador listo para empezar a trabajar. 

Seria algo increíble y muy cómodo que la vida real fuese de esa manera, pero es una pena que simplemente sea parte de una renombrada cinta del genero favorito de los Frikis (me incluyo)… La gloriosa Ciencia Ficción.

Quizas la idea de teletransportación mas temprana que incursionó en la ciencia ficción es el cuento “The man without a body” que traducido es: “El hombre sin un cuerpo”  escrito por David P. Mitchell que relata la historia de un científico que logra descubrir un metro para desarmar los átomos de su gato y transmitirlos por uno de sus cables de telégrafo  pero debido a su mala suerte, cuando intenta hacerlo con su cuerpo, la batería de su telégrafo se agota cuando solo había transmitido su cabeza, falleciendo en el intento.

Pero la sociedad en general no adopto la idea de la teletransportación hasta que la famosa serie de 1966,  Star Trek y sus películas fueron lanzadas al aire.

Y es en esa serie que se introdujo la figura de un dispositivo que hacia posible la teletransportación llamado “transportador”, teóricamente consiste en una técnica de escaneo que permite determinar la posición de las partículas del objeto, desmantelarlo y enviarla a través de un rayo a un puno definido donde se ensamblaran nuevamente.

Si nos ponemos a pensar en detalle todo lo que eso implica, llegamos a la conclusión de que el cuerpo de una persona esta compuesto por billones de billones de átomos. Y por cada uno de ellos, se debe de reproducir con absoluta exactitud su posición, el espín de cada electrón, cada una de las estructuras moleculares y ademas las formas en que todo esto interacciona entre si, como se esta moviendo, como están vibrando, todas las velocidades exactas y muchas cosas mas. 

Aunque un dato curioso es que en la serie de “Star Trek” se utilizo el concepto de la teletransportación  porque no se contaba con el presupuesto necesario como para recrear los despegues y aterrizajes de las naves en los planetas. 

Y mas recientemente, en la serie televisiva que ha causado una revolución en concepto de ciencia y comedia, “The Big Bang Theory”, en uno de sus episodios el físico teórico Sheldon Cooper define lo que es la teletransportación:

Aunque una máquina teletransportadora pudiera determinar el estado cuántico de la materia de un individuo, en realidad no estaría teletransportándolo, sino destruyéndolo en una ubicación para luego recrearlo en otra.

TELETRANSPORTACIÓN Y CIENCIA REAL

Aunque todo eso parezca una tarea prácticamente imposible de llevarse a cabo, desde el punto de vista científico, “no existiría ninguna limitación física natural por la cual no pudiese realizarse”.

Después de todo, si podemos efectuar dicho procedimiento con un único átomo (y más adelante veremos que puede hacerse y se ha hecho) no debería haber una limitante natural que nos impida hacerlo con un objeto macroscópico, como un ser humano. Lo que si existen, por lo menos en la actualidad, son limitaciones tecnológicas que nos impiden poner todo esto en práctica.

La principal limitación tecnológica que tenemos actualmente esta relacionada directamente con la capacidad de almacenamiento de información. Imaginemos que al convertir todos los átomos de nuestro cuerpo en energía  deberíamos de almacenar toda la información relativa a cada uno de estos, para poder recuperarse nuevamente en el lugar de destino. El problema directo es que el teletransporte de una sola persona generaría miles de millones de millones de terabytes de información. 

Para poder hacernos una idea mas exacta, si lográramos almacenar toda la información de una sola persona en varios discos de 1 Terabyte cada uno, necesitaríamos unos 500 millones de edificios del tamaño del Empire State para poder guardarlos.

Y como todo esto es ciencia pero sobretodo física, no podíamos dejar fuera de la fiesta al  físico mas famoso de todos los tiempos, si señores y señoras, me refiero a Don Albert Einstein…

Y a todo esto, ¿porque Einstein ?… Pues porque también podría existir una problemática tecnológica relacionada con la conversión de materia a energía. Como bien sabemos, y según fue expresado por la famosísima ecuación de Einstein “E=MC²”, la materia y la energía son la misma cosa, e incluso pueden transformarse y convertirse la una en la otra. Aunque parezca increíble, algo tan inofensivo como una galleta, podría contener tanta energía como una bomba atómica. La clave es cuán rápidamente dicha energía es liberada, lo cual en física se conoce como potencia, equivalente a energía por unidad de tiempo. Entonces, la conversión de la masa de un ser humano promedio a energía daría como resultado 40 veces la energía liberada en la más grande de las explosiones atómicas. Sin el medio tecnológico apropiado para controlar esta situación, el teletransporte podría resultar catastrófico.

Pero aparte de los problemas tecnológicos que de por si no son pocos, se le han de sumar unos no menos importantes, los problemas éticos o filosóficos.

Estos problemas filosóficos se resumen en una sola pregunta:

¿Qué es lo que se obtiene del otro lado al llevar a cabo el proceso de teletransporte?

¿Es la misma persona, o solamente una réplica cuántica perfecta? ¿Se está desarmando a la persona y armándola en otro lado; o acaso se la está desarmando, almacenando la información y luego creándola de cero nuevamente usando dicha información? ¿El teletransporte estaría matando al individuo y luego creando una copia exacta del mismo; o de alguna forma lo preserva y luego lo transporta a otro lado? Mientras se mantengan sin contestar, todas estas preguntas plantearían profundas cuestiones éticas y filosóficas muy relevantes.

LA MECÁNICA CUÁNTICA

Seguramente todos nosotros hemos oído hablar o hemos leído acerca de la  mecánica cuántica. Esta rama de la física, que representa un gigantesco avance con respecto a la física clásica newtoniana, plantea muchas situaciones sumamente exóticas y en extremo extrañas, algunas de las cuales incluso se contradicen radicalmente con nuestra lógica y sentido común. 

Uno de los principios fundamentales de la mecánica cuántica es lo que se conoce como la dualidad onda-partícula, la cual desbarató completamente nuestra forma previa de observar el mundo atómico. Previo al desarrollo de la mecánica cuántica, los físicos solían considerar al átomo como una unidad compuesta por un núcleo (que estaba formado por protones y neutrones) y una serie de electrones girando en torno a dicho núcleo en órbitas establecidas. Con el desarrollo de la mecánica cuántica, los físicos descubrieron que dichas “órbitas establecidas” no existían; en cambio, los electrones actuaban como ondas y hacían saltos cuánticos en sus movimientos aparentemente caóticos dentro de los átomos.

Otra de las exóticas propiedades de la mecánica cuántica es lo que se ha dado en conocer como el principio de incertidumbre de Heisenberg. Según este principio, no se puede conocer a la vez la velocidad y la posición exacta de un electrón, ni se puede conocer su energía exacta medida en un intervalo de tiempo dado. Sumado a la dualidad onda-partícula, este nos impide conocer la posición exacta de los electrones que orbitan al núcleo; solo podemos encontrar diferentes intensidades de onda y hablar de la probabilidad de encontrar un electrón concreto en cualquier lugar y cualquier instante de la misma.

Si tomamos en consideración la dualidad onda-partícula y el principio de incertidumbre, la mecánica cuántica nos dice entonces que en el nivel cuántico se violan todas las leyes básicas de sentido común: los electrones pueden desaparecer y reaparecer en otro lugar diferente, y también pueden estar en muchos lugares al mismo tiempo. De esta forma, los electrones podrían experimentar a nivel cuántico algo muy similar al proceso de teletransporte.

Mientras que para los electrones resulta sumamente sencillo, incluso natural, desaparecer en un lado y reaparecer en otro, trasladado a escalas macroscópicas la posibilidad de que esto mismo suceda es increíblemente remota. Aunque dicha posibilidad existe y está permitida por las leyes físicas, habría que esperar un tiempo muchísimo mayor que la edad del Universo para que ocurriera. Además, en un cuerpo humano formado por billones y billones de átomos, incluso si los electrones están danzando y saltando en su viaje alrededor del núcleo, hay tantos de ellos que sus movimientos se promedian. De hecho, a grandes rasgos, esta es la razón por la cual en nuestro nivel las sustancias parecen sólidas y permanentes.

Si bien todos estos fenómenos son sumamente interesantes y nos permiten pensar que las leyes naturales del Universo no prohíben el teletransporte, lejos se encuentran de las formas de teletransporte que nos serían útiles. Pero no nos desilusionemos y busquemos que otras opciones podemos tomar en cuenta…

EL ENTRELAZAMIENTO CUÁNTICO

Traten de imaginarse un fenómeno tan exótico y raro, que inclusive el propio Einstein tuvo que recurrir a la palabra “fantasmal” para describir a grandes rasgos su funcionamiento. El fenómeno al que me refiero se conoce como entrelazamiento cuántico, y es una de las propiedades más extrañas de la mecánica cuántica. Tan extraña es que solamente algunos pocos “elegidos” consiguen comprender realmente las muy complejas y extensas matemáticas detrás de dicha propiedad.

Explicado de forma sencilla, el entrelazamiento cuántico funciona así:  En primer lugar se deben tomar dos electrones (o cualquier partícula subatómica que les guste) en estado de coherencia, es decir, que cuenten con las mismas propiedades y vibren al unísono. Luego, aunque dichos electrones sean separados por inmensas distancias, incluso distancias tan grandes que la luz no consiga viajar de un electrón al otro, estos permanecerán en sincronización ondulatoria, y cualquier modificación que se realice sobre las propiedades de uno de los electrones, se reflejará instantáneamente en el otro electrón remoto.

Inclusive si las partículas se encuentran separadas por años luz de distancia, seguirá existiendo una onda invisible que las conecta, como si hubiese algún tipo de conexión profunda que las vincula, como si tuviesen conciencia o un alma propia. El mismo Einstein solía denominar a este fenómeno, de forma burlona, como una “fantasmal acción a distancia”.

En la década de 1980, un equipo científico de Francia probó experimentalmente este fenómeno utilizando dos detectores separados por 13 metros de distancia y midiendo los espines de fotones emitidos por átomos de calcio. Increíblemente, los resultados concordaron por completo con la teoría cuántica: aún estando separados, cuando se modificaban las propiedades de uno de los fotones, dicha modificación se reflejaba instantáneamente en el otro fotón, como si algo desconocido los mantuviese unidos y comunicase esa información entre ellos.

En el año 1993, científicos de IBM demostraron que era físicamente posible teletransportar objetos, al menos a nivel atómico, usando el entrelazamiento cuántico. En realidad lo que se transporta no es el objeto en sí, sino toda la información contenida dentro del mismo. Desde entonces los físicos han conseguido teletransportar fotones e incluso átomos enteros utilizando las propiedades del entrelazamiento cuántico, en lo que se ha dado a conocer como “teletransporte cuántico”.

Con la utilización de este método se han logrado increíbles avances recientes en relación con el teletransporte. En el año 2004 físicos de la Universidad de Viena teletransportaron partículas de luz a una distancia de 600 metros. En el mismo año, se consiguió el teletransporte cuántico no de fotones de luz, sino de átomos reales (puntualmente tres átomos de berilio), lo cual nos acerca a un dispositivo de teletransporte más realista y útil. En el año 2006 se logró otro avance espectacular: el primer teletransporte de un objeto macroscópico. Un equipo de físicos consiguió entrelazar un haz luminoso con un gas de átomos de cesio, el cual involucraba billones y billones de átomos. Luego codificaron la información contenida dentro de pulsos de láser y fueron capaces de teletransportar esa información a los átomos de cesio a una distancia de casi medio metro.

En el año 2012, investigadores europeos batieron el récord hasta entonces vigente pues lograron teletransportar fotones a una distancia de 143 kilómetros. Así que podemos decir que cada vez estamos mas cerca…

TELETRANSPORTE Y EL CONDENSADO DE BOSE-EINSTEIN

Debido a que lograr un estado de entrelazamiento cuántico entre objetos plantea inmensas dificultades, los físicos comenzaron a explorar otras posibilidades para el teletransporte de objetos sin la necesidad de recurrir al entrelazamiento. En el año 2007, finalmente se consiguió desarrollar un nuevo esquema de teletransporte, basado en un nuevo estado de la materia denominado “condensado de Bose-Einstein” (o BEC).

En la naturaleza se puede encontrar la temperatura más fría en el espacio exterior, la cual corresponde a 3°K por encima del cero absoluto (esto se debe al calor residual del Big Bang que aún llena el Universo). En cambio,un BEC se encuentra a una millonésima de mil millonésima de grado sobre el cero absoluto, lo más que podemos acercarnos a este último. Cuando un objeto se enfría hasta alcanzar casi el cero absoluto, todos sus átomos se ponen en el estado de energía más baja, de modo que comienzan a vibrar al unísono y se hacen coherentes entre sí.

El nuevo dispositivo de teletransporte funcionaría entonces de la siguiente manera. Se toma un conjunto de átomos de rubidio super-fríos en un estado BEC. Entonces se aplica al BEC un haz de materia, también compuesto por átomos de rubidio. Estos últimos átomos también“quieren ponerse” en el estado de energía más baja, así que ceden su exceso de energía en forma de un pulso de luz. Este haz de luz, que contiene toda la información cuántica de la materia original, se envía a través de un cable de fibra óptica. Por último, el haz de luz incide sobre otro BEC, que transforma el haz de luz en el haz de materia original.

Este nuevo método de teletransporte es sumamente prometedor, puesto que se evita el muy complicado entrelazamiento de átomos. De cualquier modo, las cosas no son tan sencillas como parecerían: este método también tiene sus problemáticas, principalmente por depender de las propiedades de los BEC, que son muy difíciles de recrear en el laboratorio.

QUE PODEMOS ESPERAR

Como nos hemos dado cuenta, la teletransportación esta un poco lejos de hacerse realidad debido a que aun tenemos problemas técnicos muy difíciles de superar, pero al paso en el que la tecnología esta evolucionando si podemos asegurar que llegara el día en el que teletransportarse sea tan común y ordinario como leer la ultima notificación de nuestra red social favorita. Quizas solo necesitemos de unos cuantos siglos o quizás de un tiempo mucho mayor.

Falta aun mucho por descubrir, mucho por hacer y demasiado por discutir.

Sabemos que actualmente se requieren los laboratorios y el instrumental más avanzado del mundo para teletransportar tan solo algunos átomos. Los físicos confían que en las próximas décadas se pueda realizar el teletransporte de objetos más complejos, como moléculas o incluso algún virus. Pero nosotros no viviríamos lo suficiente como para llegar a verlo, aunque alguno de nuestros descendientes podría estar disfrutando de esa invención dentro de un buen tiempo.

Aun siendo así  cuando llegue el momento seguro ese avance científico sera una de las mas significativas revoluciones experimentadas por la humanidad y la sociedad. 

Esta entrada participa en la XXXIX Edición del Carnaval de la Física, que esta siendo organizado en esta ocasión por el blog El zombi de Schrödinger. ]

Referencias |

Anuncios

¿Cómo sabemos que la Teoría de la Relatividad es correcta?

Seguramente todos hemos escuchado hablar de Albert Einstein, sin duda es uno de los físicos mas importantes de la historia y para muchos el mayor genio de todos los tiempos (en lo personal prefiero a Newton, pero queda a cuestión de gustos). Considero que estoy en lo correcto al afirmar que no existe persona en la tierra que tenga conocimientos básicos de ciencia y que no sepa quien es la persona de la siguiente imagen. 

Albert Einstein es un físico que en su época obtuvo un enorme reconocimiento de la sociedad y tanta fama como las actuales estrellas de cine o  de la música. No había lugar en el que una multitud de personas se acercaran a el para verlo mejor, intercambiar algunas palabras e inclusive obtener alguna fotografía del físico.

Pero no vamos a hablar acerca de su fama, vamos a hablar acerca de su obra, mas especificamente de su Teoría de la Relatividad, muchas personas han escuchado de esta revolucionaria obra, la idea general es fácil de comprender, pero adentrarse en sus variaciones y todo lo que implica dentro de la Física es algo que a muchos confunde con facilidad y a los que estamos familiarizados con ella nos causa ese nudo en la garganta al ver semejantes postulados.

Para muchos una simple obra teórica que no sirve de nada y que aun no ha sido comprobada, para muchos otros significa el futuro por develar junto con la mecánica cuántica.

La teoría de la relatividad, desarrollada fundamentalmente por Albert Einstein, pretendía originalmente explicar ciertas anomalías en el concepto de movimiento relativo, pero en su evolución se ha convertido en una de las teorías más importantes en las ciencias físicas y ha sido la base para que los físicos demostraran la unidad esencial de la materia y la energía, el espacio y el tiempo, y la equivalencia entre las fuerzas de la gravitación y los efectos de la aceleración de un sistema.

La teoría de la relatividad, tal como la desarrolló Einstein, tuvo dos formulaciones diferentes.

  • La primera es la que corresponde a dos trabajos publicados en 1906 en los Annalen der Physik. Es conocida como la Teoría de la relatividad especial y se ocupa de sistemas que se mueven uno respecto del otro con velocidad constante (pudiendo ser igual incluso a cero).
  • La segunda, llamada Teoría de la relatividad general (así se titula la obra de 1916 en que la formuló), se ocupa de sistemas que se mueven a velocidad variable.

La teoría especial de la relatividad no negaba las teorías de Newton o de Galileo, simplemente las corregía. La relatividad sólo se hacía evidente a velocidades cercanas a la velocidad de la luz. A velocidades “normales”, las diferencias en los resultados al utilizar las transformaciones de Galileo y las transformaciones de Lorentz, son tan pequeñas que no se pueden detectar, y es por eso que las implicaciones de la relatividad especial nos parecen tan poco intuitivas. Pero si fuéramos capaces de generar una velocidad suficiente (digamos 3/4 de la velocidad de la luz, por ejemplo), empezaríamos a notar los efectos predichos por la relatividad:  

  • Los relojes en movimiento irían más lentos que los estacionarios (no porqué el reloj funcionara más despacio, sino por el tiempo en sí).  
  • Los objetos en movimiento se contraerían en la dirección del movimiento.  
  • Cuanto más rápido se moviera un objeto, más masa tendría. 

Estos efectos están presentes en nuestra vida diaria, pero son tan increíblemente pequeños que los podemos despreciar perfectamente. Ese es el porque de que las transformaciones de Galileo funcionan tan bien, y las podemos seguir utilizando en nuestros sistemas de referencia que se mueven con velocidades relativamente pequeñas.

 

Teoría de la relatividad especial

Los postulados de la relatividad especial son dos. El primero afirma que todo movimiento es relativo a cualquier otra cosa, y por lo tanto el éter, que se había considerado durante todo el siglo XIX como medio propagador de la luz y como la única cosa absolutamente firme del Universo, con movimiento absoluto y no determinable, quedaba fuera de lugar en la física, que no necesitaba de un concepto semejante (el cual, además, no podía determinarse por ningún experimento).

El segundo postulado afirma que la velocidad de la luz es siempre constante con respecto a cualquier observador. De sus premisas teóricas obtuvo una serie de ecuaciones que tuvieron consecuencias importantes e incluso algunas desconcertantes, como el aumento de la masa con la velocidad. Uno de sus resultados más importantes fue la equivalencia entre masa y energía, según la conocida fórmula E=mc², en la que c es la velocidad de la luz y representa la energía obtenible por un cuerpo de masa cuando toda su masa sea convertida en energía.

Dicha equivalencia entre masa y energía fue demostrada en el laboratorio en el año 1932, y dio lugar a impresionantes aplicaciones concretas en el campo de la física (tanto la fisión nuclear como la fusión termonuclear son procesos en los que una parte de la masa de los átomos se transforma en energía). Los aceleradores de partículas donde se obtiene un incremento de masa son un ejemplo experimental  muy claro de la teoría de la relatividad especial.

La teoría también establece que en un sistema en movimiento con respecto a un observador se verifica una dilatación del tiempo; esto se ilustra claramente con la famosa paradoja de los gemelos:

“imaginemos a dos gemelos de veinte años, y que uno permaneciera en la Tierra y el otro partiera en una astronave, tan veloz como la luz, hacia una meta distante treinta años luz de la Tierra; al volver la astronave, para el gemelo que se quedó en la Tierra habrían pasado sesenta años; en cambio, para el otro sólo unos pocos días”.

Teoría de la relatividad general

La teoría de la relatividad general se refiere al caso de movimientos que se producen con velocidad variable y tiene como postulado fundamental el principio de equivalencia, según el cual los efectos producidos por un campo gravitacional equivalen a los producidos por el movimiento acelerado.

La revolucionaria hipótesis tomada por Einstein fue provocada por el hecho de que la teoría de la relatividad especial, basada en el principio de la constancia de la velocidad de la luz sea cual sea el movimiento del sistema de referencia en el que se mide (tal y como se demostró en el experimento de Michelson y Morley [1]), no concuerda con la teoría de la gravitación newtoniana: si la fuerza con que dos cuerpos se atraen depende de la distancia entre ellos, al moverse uno tendría que cambiar al instante la fuerza sentida por el otro, es decir, la interacción tendría una velocidad de propagación infinita, violando la teoría especial de la relatividad que señala que nada puede superar la velocidad de la luz.

Tras varios intentos fallidos de acomodar la interacción gravitatoria con la relatividad, Einstein sugirió de que la gravedad no es una fuerza como las otras, sino que es una consecuencia de que el espacio-tiempo se encuentra deformado por la presencia de masa (o energía, que es lo mismo). Entonces, cuerpos como la tierra no se mueven en órbitas cerradas porque haya una fuerza llamada gravedad, sino que se mueven en lo más parecido a una línea recta, pero en un espacio-tiempo que se encuentra deformado por la presencia del sol.

Los cálculos de la relatividad general se realizan en un espacio-tiempo de cuatro dimensiones, tres espaciales y una temporal, adoptado ya en la teoría de la relatividad restringida al tener que abandonar el concepto de simultaneidad. Sin embargo, a diferencia del espacio de Minkowsy y debido al campo gravitatorio, este universo no es euclidiano. Así, la distancia que separa dos puntos contiguos del espacio-tiempo en este universo es más complejo que en el espacio de Minkowsky [2].

Con esta teoría se obtienen órbitas planetarias muy similares a las que se obtienen con la mecánica de Newton. Uno de los puntos de discrepancia entre ambas, la anormalmente alargada órbita del planeta Mercurio, que presenta un efecto de rotación del eje mayor de la elipse (aproximadamente un grado cada diez mil años) observado experimentalmente algunos años antes de enunciarse la teoría de la relatividad, y no explicado con las leyes de Newton, sirvió de confirmación experimental de la teoría de Einstein.

Un efecto que corroboró tempranamente la teoría de la relatividad general es la deflexión que sufren los rayos de luz en presencia de campos gravitatorios (conocido como doblamiento de la luz). Los rayos luminosos, al pasar de una región de un campo gravitatorio a otra, deberían sufrir un desplazamiento en su longitud de onda (el Desplazamiento al rojo de Einstein), lo que fue comprobado midiendo el desplazamiento aparente de una estrella, con respecto a un grupo de estrellas tomadas como referencia, cuando los rayos luminosos provenientes de ella rozaban el Sol.

La verificación se llevó a cabo aprovechando un eclipse total de Sol (para evitar el deslumbramiento del observador por los rayos solares, en el momento de ser alcanzados por la estrella); la estrella fue fotografiada dos veces, una en ausencia y otra en presencia del eclipse. Así, midiendo el desplazamiento aparente de la estrella respecto al de las estrellas de referencia, se obtenía el ángulo de desviación que resultó ser muy cercano a lo que Einstein había previsto.

El concepto de tiempo resultó profundamente afectado por la relatividad general. Un sorprendente resultado de esta teoría es que el tiempo debe transcurrir más lentamente cuanto más fuerte sea el campo gravitatorio en el que se mida. Esta predicción también fue confirmada por la experiencia en 1962. De hecho, muchos de los modernos sistemas de navegación por satélite tienen en cuenta este efecto, que de otro modo darían errores en el cálculo de la posición de varios kilómetros.

Otra sorprendente deducción de la teoría de Einstein es el fenómeno de colapso gravitacional que da origen a la creación de los agujeros negros. Dado que el potencial gravitatorio es no lineal, al llegar a ser del orden del cuadrado de la velocidad de la luz puede crecer indefinidamente, apareciendo una singularidad en las soluciones. El estudio de los agujeros negros se ha convertido en pocos años en una de las áreas de estudio de mayor actividad en el campo de la cosmología.

 

Cómo se demostró la Teoría de la Relatividad 

En 1919 un equipo de investigadores británicos partió hacia la isla africana de Príncipe para probar que un físico alemán tenía razón. Albert Einstein había presentado la Teoría General de la Relatividad en 1915. El nuevo paradigma, de ser correcto, iba a cambiar radicalmente la forma de entender el universo.

La oportunidad para comprobar si Einstein estaba en lo cierto se presentó el 29 de mayo de 1919. Ese día, se produciría un eclipse de magnitud descomunal que recorrería varios países cercanos al ecuador. Duraría 6 minutos y 50 segundos (la duración máxima de un eclipse es de 7 minutos y 31 segundos) y daría la oportunidad de realizar un gran número de observaciones útiles para dirimir la controversia.

El Astrónomo Real, Sir Frank Dyson, planeó una misión doble. Un equipo que él mismo dirigiría partiría hacia la ciudad brasileña de Sobral y un segundo grupo observaría el eclipse desde la isla africana de Príncipe. Al frente de esta misión estaría el astrofísico Arthur Eddington, en aquellos años uno de los pocos que de verdad comprendían la teoría de la relatividad.

Para explicar su teoría, Einstein había planteado una situación hipotética en la que la línea de visión entre un observador en la Tierra y una estrella estuviese bloqueada por el borde del Sol. Si Newton tuviese razón, la estrella permanecería invisible, pero Einstein calculó que algo mucho más sorprendente sucedería. La fuerza gravitatoria solar doblaría el espacio a su alrededor, los rayos de la estrella seguirían ese camino curvado para rodear el Sol y llegarían sin problemas hasta el observador en la Tierra. El oportuno eclipse permitiría poner a prueba esta hipótesis al ocultar la luz solar; gracias a la Luna, los científicos británicos podrían fotografiar las estrellas cercanas al Sol que en condiciones normales quedan ocultas por el fulgor del astro.

La suerte de Eddington pareció desvanecerse conforme se acercaba el día. Llovió durante los 19 días previos al 29 de mayo y cuando comenzó el eclipse las nubes tapaban el Sol.

Durante 400 segundos, los científicos pensaron que su oportunidad se había desvanecido, pero entonces, cuando sólo faltaban 10 segundos para que se apartase la Luna, las nubes se retiraron y Eddington pudo tomar una sola fotografía.

Comparando esa única imagen con otras que había tomado cuando el Sol no estaba allí, el astrofísico inglés pudo calcular que la gravedad solar había provocado una deflección de la luz de aproximadamente 1,6 segundos de arco. El resultado coincidía con la predicción de la Teoría de la Relatividad General; Einstein tenía razón.

MAS RECIENTEMENTE

La misión Gravity Probe B  [3] de la agencia espacial estadounidense (NASA) comprobó dos predicciones de la teoría general de la relatividad del científico Albert Einstein, tras más de 40 años de haberse iniciado el experimento.

Con un costo de 760 millones de dólares, la nave propiedad de la NASA demostró que la fuerza de gravedad de los grandes cuerpos del Universo distorsiona el tiempo y el espacio, demostrando que la gravedad se produce cuando la masa curva el espacio y el tiempo, referidos al efecto geodésico, al mismo tiempo en el que demuestra la torsión que se produce en el espacio y tiempo debido a la torsión de los cuerpos, por lo que dos predicciones de la teoría de la relatividad de Einstein son comprobadas.

En su página oficial, la NASA publicó que la sonda espacial determinó ambos efectos con una precisión mayor a lo esperado por científicos, explicando que el comportamiento de GP-B hubiera sido otro si la gravedad no afectara al espacio y al tiempo, por lo que la teoría de Einstein es confirmada.

En conferencia de prensa publicada también en el sitio de la NASA, Francis Everitt, físico de la Universidad de Stanford y principal investigador del satélite Gravity Probe B, señaló que el proyecto iniciado hace más de 40 décadas, pudo demostrar que el Universo de Einstein, el tiempo y el espacio son deformados por la gravedad. La Tierra distorsiona ligeramente el espacio a su alrededor debido a la gravedad.

El científico ejemplificó el descubrimiento del físico mencionando que si la Tierra estuviera sumergida en miel, a medida que el planeta rote, la miel a su alrededor de arremolinaría, mismo efecto que ocurre con el tiempo y el espacio.

En el Universo de Einstein, el tiempo y el espacio son deformados por la gravedad. La Tierra distorsiona ligeramente el espacio a su alrededor, debido a su gravedad.

Si los giroscopios hubieran apuntado en la misma dirección siempre que estuvieran en órbita (…) Pero como confirmación de la teoría general de la relatividad de Einstein, los giroscopios experimentaron cambios mensurables en la dirección de su giro a medida que eran atraídos por la gravedad de la Tierra

La NASA detalló que el proyecto fue ideado por primera ocasión en 1959, como un satélite que orbitaba la Tierra y a través de la recopilación de información determinar la teoría de Einstein.

El lanzamiento de GP-B se registró hace 41 años, a una órbita de más de 600 kilómetros sobre la Tierra con cuatro giroscopios, ruedas de un aparato circular que gira en torno a un eje y que indica el movimiento y registra los cambios en su orientación.

Las tecnologías creadas para desarrollar la sonda gravitacional fueron usadas luego para elaborar los sistemas de posicionamiento global (GPS) y el cálculo de la radiación de fondo del Universo.

Ese cálculo es la base de la teoría del Big Bang y dio lugar al premio Nobel para John Mather [4], de la NASA.

Datos curiosos acerca de la Teoría de la Relatividad

  • Al crear su Teoría, Einstein no la llamó relatividad. La palabra nunca aparece en su trabajo original de 1905 : ”Sobre la electrodinámica de los cuerpos en movimiento”, y de hecho odiaba el término, prefiriendo el de “teoría de la invariación” (porque las leyes de la física parecen las mismas para todos los observadores –  y no hay nada “relativo” en ello).
  • ¿El continuo del espacio-tiempo? No, eso no es de Einstein. La idea del tiempo como cuarta dimensión se le ocurrió a Hermann Minkowski, uno de los profesores de Einstein, quién una vez le llamó “perro vago” a causa de su poco aprecio por las matemáticas.
  • El físico austriaco Friedrich Hasenöhrl publicó una variación de la ecuación: E = mc2 un año antes de que lo hiciera Einstein. (Pueden ver mas información en esta entrada: “El verdadero origen de E = mc^2”)
  • El trabajo que Einstein desempeñaba a jornada completa para la oficina suiza de patentes le forzaba a trabajar en la relatividad durante las horas en que nadie le observaba. Escondía los papeles en su atiborrada mesa de trabajo cuando se le acercaba algún supervisor.
  • El afecto también es relativo, o al menos para Einstein lo era. “Necesito a mi mujer, ella resuelve todos los problemas matemáticos por mi”, escribió Einstein mientras completaba su teoría en 1904. Para el año 1914, le ordenó “renunciar a tener toda clase de relación personal conmigo, ya que esto no es algo que se requiera de forma absoluta por razones sociales”.
  • Las leyes también son relativas. Según Einstein, nada viaja más rápido que la luz, pero el propio espacio no tiene esta limitación; inmediatamente después del Big Bang, la huida expansiva del universo logró aparentemente superar a la luz.
  • En retrospectiva, parece que Eddington modifico los resultados, descartando las fotos que mostraban el resultado “incorrecto” de la Teoría de la Relatividad, aunque esto quizás solo sea un mito.
  • A día de hoy comprendemos tan bien la relatividad general que la usamos para pesar galaxias y para localizar planetas distantes por la forma en que doblan la luz.

 

Si aún no te aclaras demasiado con las ideas de Einstein prueba con esta explicación dada por el propio interesado:

“Pon tu mano en una estufa durante un minuto y te parecerá una hora. Siéntate junto a una chica bonita durante una hora y te parecerá un minuto. Eso es la relatividad”.

REFERENCIAS |