Archivo de la categoría: Estrella

El Universo y sus feroces Monstruos

El titulo de esta entrada créanme que no ha sido exagerado de ninguna manera. Para muchos el basto Universo es tranquilo, y en realidad parece ser gobernado por verdadera paz que impera en todas direcciones veamos a donde veamos. Pero esa idea errónea que casi todos tenemos es causada en parte debido a que no podemos ver la mayoría de las bestias que salpican nuestro cosmos.

El Universo en realidad es un lugar que definido en pocas palabras seria algo como: caos, desorden, fuerza, peligro y muchos otros sinónimos. 

El Universo se genero con una violenta explosión y desde su inicio se siguen produciendo toda clase de procesos violentos en él.

Existen muchos feroces monstruos que se estremecen en puntos lejanos del Universo y hay varios que están bastante cerca como para no ignorarlos.  La mayoría de ellos son enormes y para poder medirlos los astrofísicos los comparan con la masa de nuestro Sol, equivalente a unas 332.950 veces la masa de la Tierra, su valor es:

Dentro de todos esos gigantes violentos, mencionare a quienes mas destacan, tanto por su voracidad como por su increíble energía. Los principales son:

  • Las Supernovas
  • Los Agujeros Negros Supermasivos
  • Los Quasares 
  • Y los Magnetares.

Todos ellos empiezan su historia con la muerte de una estrella cuyo destino final dependerá de la masa que posea. Imaginemos una estrella como nuestro Sol, cuando este “muera” se transformara en una enana blanca, un remanente un tanto inerte de lo que era cuando aun no no había agotado su combustible nuclear.

Si el Sol fuera ocho veces mas masivo entonces al morir todo indicaría que se convertirá en una estrella de neutrones, la cual surge luego de una explosión de determinados tipos de supernova.

Si el Sol fuera unas treinta veces mas masivo, el resultado final seria un hambriento agujero negro.

Cuando algunos de estos monstruos interactúan con otras estrellas u objetos de su mismo tipo se originan algunos eventos cósmicos extraordinariamente energéticos  tan fantásticos que su detección es celebrada por los astrónomos de todo el mundo.

Observatorio Swift

Debido a ello, el Universo conocido esta siendo vigilado continuamente para que no nos perdamos de tan espectaculares acontecimientos, los astrofísicos investigan el Cosmos con los ojos electrónicos de los observatorios espaciales, como el Fermo, el Swift, el Hubble, el CXO, y varios mas de la NASA que buscan el rastro de algunos monstruos cósmicos en las emanaciones de rayos Gammaráfagas colosales de energía que surgen tras una explosión de supernova muy potente, o tras la colisión de objetos masivos y compactos, como las estrellas de neutrones o los agujeros negros.

Las Supernovas

Una supernova es una enorme explosión estelar que se manifiesta de forma increíble  algunas veces se puede notar a simple vista en algún lugar de la esfera celeste en donde anteriormente no se tenia constancia de existiese algo en particular. Debido a ello se les denomino supernovas (estrellas nuevas).

Una supernova puede llegar a producir destellos de luz muy intensos que pueden prolongarse durante semanas e inclusive varios meses. Su característica principal es que aumentan su intensidad luminosa hasta que superan la del resto de la galaxia y llegan a una magnitud absoluta.

Su origen aun se debate, pueden ser estrellas muy masivas que son incapaces de sostenerse por la presión de degeneración de los electrones [1], lo que provoca que se contraigan violenta y repentinamente generando durante el proceso una enorme emisión de energía. Llegando a liberar en repetidas ocasiones  1044 J de energia.

La explosión de una supernova provoca la expulsión de las capas externas de una estrella por medio de poderosas ondas de choque.

Un caso muy conocido ocurrió a primeras horas de la mañana del 19 de marzo del 2008, un punto muy luminoso se hizo visible en la constelación de Boyero, no se trataba de una estrella nueva, era una explosión de rayos gamma de 2.5 millones de veces mas luminosa que la mas brillante de las supernovas, ocurrida en una época tan remota que el Universo ni siquiera había alcanzado la mitad de su edad actual. Ese fenómeno impresionante duro unos 15 segundos y aunque provoco mucho entusiasmo en la comunidad astronómica de todo el mundo, quedo en segundo plano, porque en la mañana del 23 de abril, los instrumentos abordo del telescopio espacial Swift de la NASA captaron una explosión cataclísmica en la constelación de Leo.

Ese evento que apenas duro unos 10 segundos, constituye la mayor fuente de radiaciones gamma jamas descubierta hasta la fecha, esa estrella seguramente se convirtió en un agujero negro. Ese suceso ocurrió a mas de 13.000 millones de años luz, y tuvo lugar apenas unos 630 millones de años después del Big Bag, y es el acontecimiento astrofísico mas antiguo jamas detectado hasta ahora.

El objeto mas lejano, el GRB 090423 (dentro del circulo) ocurrió unos 630 millones de años después del Big Bang .

A esa distancia, la mayoría de las explosiones de supernovas son indetectables. Sólo un 1% de ellas lo hace de tal forma que la materia es expulsada a mas de 99.99% de la velocidad de la luz. Se trata de un suceso increíblemente energético (las explosiones de rayos gamma generan mas energía en unos segundos que nuestra estrella en toda su vida), que confirma que en las primeras etapas del Universo ya se producía el nacimiento y colapso de estrellas masivas.

 

Agujero Negro Supermasivo 

Lo que llamamos un agujero negro Supermasivo es un agujero negro con una masa del orden de millones o inclusive miles de millones de masas solares.

Se cree que muchas, si no es que todas las galaxias tienen un agujero negro supermasivo en su centro. Inclusive una de las teorías mas extendidas en los últimos tiempos es que todas las galaxias elípticas y espirales tienen un agujero negro supermasivo en su centro, lo cual conseguiría generar suficiente gravedad como para mantener la unidad.

Imagen del desarrollo de Sagitario A*

El ejemplo mas claro es el que tenemos mas próximo, en el centro de nuestra galaxia se encuentra Sagitario A*, cuya existencia se ha confirmado de forma definitiva en el centro de la Vía Láctea. Para detectarlo los astrónomos utilizaron ondas de rayos infrarrojos que evitaban el polvo estelar que bloquea la vista de esa zona central. Durante años, fueron tomando puntos de referencia de la órbita de las 28 estrellas, que se mueven más rápido por estar cerca del agujero negro. «Han podido estudiar la órbita completa de una de ellas que tarda 16 años en recorrerla y de ese modo pueden definir la materia que siente cada estrella, que es la que tiene el agujero negro.

En algunas regiones del espacio, la fuerza de gravedad es tan formidable que ni la luz puede escapar. Eso es, en esencia un agujero negro, pero los agujeros negros supermasivos son auténticos monstruos cósmicos con un diámetro tan grande como la del Sistema Solar.

Los agujeros negros de este tamaño pueden formarse solo de dos formas: por un lento crecimiento de materia (que requiere un periodo muy largo de tiempo y enormes cantidades de materia ), o directamente por presión externa en los primeros instantes del Big Bang.

El agujero negro supermasivo mas grande de todos podría ser un agujero negro que esta situado en la galaxia NGC mil 227, ubicada a 220 millones de años luz de distancia de la Tierra en la constelación de Perseo.

Se especula que agujeros negros supermasivos en el centro de muchas galaxias, actuarían como los “motores” de las mismas, provocando sus movimientos giratorios, tales como galaxias Seyfert [2] y quasares.

Los Quasares

Un quasar es técnicamente una galaxia hiperactiva, los quasares son las mas brillantes y letales del espacio. En el corazón de esas galaxias habita un monstruo galáctico, los quasares son alimentados por un agujero negro supermasivo que absorbe continuamente enormes cantidades de materia y estrellas cada año. Los quasares con los objetos energéticos mas efectivos del universo, emiten mas energía que 100 galaxias normales. 

Los quares visibles muestran un desplazamiento al rojo muy alto. El consenso científico dice que esto es un efecto de la expansión métrica del universo entre los quasares y la Tierra. Combinando esto con la Ley de Hubble se sabe que los quasares están muy distantes. Para ser observables a esas distancias, la energía de emisión de los quasares hace empequeñecer a casi todos los fenómenos astrofísicos conocidos en el universo, exceptuando comparativamente a eventos de duración breve como supernovas y brotes de rayos gamma. Los quasares pueden fácilmente liberar energía a niveles iguales que la combinación de cientos de galaxias medianas. La luz producida sería equivalente a la de un billón de soles.

Todos los quasares se sitúan a grandes distancias de la Tierra, el más cercano a 780 millones de años luz y el más lejano a 13.000 millones de años luz,

Los Magnetares o Imanes de los Dioses

Un magnetar o magnetoestrella es una estrella de neutrones alimentada con un campo magnético extremadamente fuerte. Estas estrellas desprenden emisiones de alta energía de rayos X y rayos gamma.  Se estima que este tipo de cuerpos celestes se originan de estrellas que poseen entre 30 a 40 veces la masa de nuestro Sol. 

La vida activa de un magnetar es corta, sus potentes campos magnéticos se desmoronan pasados los 10.000 años, perdiendo consecuentemente su vigorosa emisión de rayos X.

Un magnetar que cuente con un radio de tan sólo 10 kilómetros contiene la misma masa que nuestro Sol.

El 27 de diciembre de 2004, se registró un estallido de rayos gamma proveniente del magnetar denominado SGR 1806-20 situado en la Vía Láctea. El origen estaba situado a unos 50.000 años luz. En la opinión de eminentes astrónomos, si se hubiera producido a tan solo 10 años luz de la Tierra, −distancia que nos separa de alguna de las estrellas más cercanas−, hubiera peligrado seriamente la vida en nuestro planeta al destruir la capa de ozono, alterando el clima global y destruyendo la atmósfera. Esta explosión resultó ser unas cien veces más potente que cualquier otro estallido registrado hasta esa fecha. La energía liberada en dos centésimas de segundo fue superior a la producida por el Sol en 250.000 años.

Mas recientemente en agosto de 2005, el satélite Swift de la NASA capto un resplandor super brillante en una remota región del universo que tardo 250 segundos. Esa explosión produjo la misma energía que generaría nuestro Sol durante 10.000 millones de años. Ese fenómeno correspondía con un inusual estallido de rayos gamma y encajaba, con la actividad de un Magnetar.

Y en junio de 2010, la Agencia Espacial Europea anuncio el hallazgo de uno es estos objetos a 15.000 años luz de la tierra. Pese a la distancia, es capaz de aportar a nuestro planeta tanta energía como una erupción Solar.

A continuación se puede ver una pequeña comparación entre distintas intensidades de campos magnéticos:

  • Brújula movida por el campo magnético de la Tierra: 0,6 Gauss
  • Pequeño imán, como los sujetapapeles de los frigoríficos: 100 Gauss
  • Campo generado en la Tierra por los electro imanes más potentes:4,5×105 Gauss
  • Campo máximo atribuido a una de las denominadas estrellas blancas: 10×108 Gauss
  • Magnetares (SGRs y AXPs):  1014 ~ 1015 Gauss

Sin duda alguna los cuerpos que crean los mayores campos magnéticos de todo el Universo.  

Si algún astronauta hipotéticamente se desviara de su curso y se acercase a unos 100.000 km de distancia, las consecuencias serian terroríficas, el campo magnético del magnetar podría desordenar los átomos de la carne humana y sus fuerzas gravitatorias destrozarían a una persona.

Un magnetar situado a 10 años luz de nuestro Sistema Solar podría causar un cataclismo cósmico, destruiría nuestra atmósfera y seria el fin de la vida en la Tierra.

Aunque la probabilidad de que se encuentren cerca de nosotros es casi nula, podemos estar tranquilos. Lo bueno de todo esto es que aunque ocurriera cualquier contacto con alguno de estos monstruos muchos de nosotros ya no estaremos aquí para verlo. Al menos eso es lo que dicen los científicos.

Anuncios

Descubiertas las primeras galaxias del Universo

Recientemente se ha confeccionado el primer censo de las galaxias más primitivas y distantes. Un equipo de astrónomos dirigido por el Instituto Tecnológico de California (Caltech), en Pasadena, ha utilizado el Telescopio Espacial Hubble de la NASA para descubrir siete de las galaxias más arcaicas y distantes.

La más antigua de estas galaxias descubiertas ha sido observada tal como era cuando el universo tenía sólo 380 millones años de edad. Todas las galaxias recién descubiertas se formaron hace más de 13.000 millones de años, cuando el universo tenía sólo el 4 por ciento de su edad actual. A ese período los astrónomos lo llaman el “amanecer cósmico”, debido a que fue entonces cuando nacieron las primeras galaxias y el universo pasó a estar más iluminado. Las estrellas y galaxias comenzaron a formarse alrededor de 200 millones de años después del Big Bang. El universo tiene ahora 13.700 millones de años de edad.

Las nuevas observaciones abarcan un período de entre 350 millones y 600 millones de años después del Big Bang, y representan el primer censo fiable de galaxias en una época tan temprana de la historia cósmica. Los astrónomos han comprobado que la cantidad de galaxias aumentó constantemente con el paso del tiempo, lo que respalda la idea de que las primeras galaxias no se formaron en una proliferación masiva y acelerada, sino que poco a poco se fueron forjando con la progresiva anexión de estrellas

[Img #11725]

La nueva imagen de campo ultraprofundo del Hubble revela 7 galaxias remotas nunca antes vistas. 

Dado que a la luz le toma miles de millones de años viajar distancias tan vastas, las imágenes astronómicas muestran cómo se veía el universo durante ese período, hace miles de millones de años, cuando la luz que ahora nos llega se embarcó en su viaje. Cuanto más lejos en el espacio miran los astrónomos, más atrás en el tiempo están viendo.

En el nuevo estudio, el equipo de Richard Ellis ha explorado los confines conocidos del cosmos y, por lo tanto, un pasado igual de lejano, en este caso el más remoto que ha sido estudiado hasta ahora con el Telescopio Espacial Hubble. Las nuevas observaciones llevaron al Hubble al límite de sus capacidades técnicas, y permiten atisbar cómo serán las que se hagan con la próxima generación de telescopios espaciales infrarrojos, gracias a los cuales será posible sondear el universo aún más atrás en el tiempo.

Información Adicional: http://www.caltech.edu/content/caltech-led-astronomers-discover-galaxies-near-cosmic-dawn

Como se esta enfriando el Universo desde el Big Bang

Haciendo uso de la CSIRO Australia Telescope Array compacto cerca de Narrabri, Nueva Gales del Sur, un equipo internacional de Suecia, Francia, Alemania y Australia han medido cuán caliente estaba el Universo cuando tenía la mitad de su edad actual.

Esta es la medida más precisa que jamás se ha hecho de cómo el Universo se ha enfriado durante su historia de 13,77 mil millones de años.  Dado que la luz tarda en viajar, cuando miramos hacia el espacio lo que vemos es el universo como lo fue en el pasado, como lo fue cuando la luz dejó las galaxias que estamos viendo. Así que para mirar hacia atrás a mitad de camino en la historia del universo, tenemos que mirar a mitad de camino en todo el Universo.

¿Cómo podemos medir la temperatura a una distancia tan grande?

Los astrónomos estudiaron gas en una galaxia sin nombre  que se encuentra a 7200 millones de años luz de distancia [posee un corrimiento al rojo de 0,89].

Lo único que mantiene este gas caliente es la radiación cósmica de fondo, el brillo remanente del Big Bang. Por suerte, hay otra galaxia poderosa, un quásar (llamado PKS 1830-211), que está detrás de la galaxia sin nombre. Las ondas de radio de este quásar tienen que pasar a través del gas de la galaxia en primer plano. Al hacerlo, las moléculas de gas absorben algo de la energía de las ondas de radio. Esto deja un distintivo de “huella digital” en las ondas de radio.

De esta “huella digital” es de donde los astrónomos calcularon la temperatura del gas. Encontraron que era 5,08 grados Kelvin (-267,92 grados Celsius), muy frío, pero aún más caliente que el Universo actual, que está en 2,73 grados Kelvin (-270,27 grados Celsius).

De acuerdo con la teoría del Big Bang, la temperatura de la radiación cósmica de fondo cae suavemente a medida que el Universo se expande. Eso es lo que vemos en las mediciones. El Universo de unos pocos millones de años atrás era unos grados más caliente de lo que es ahora, exactamente como la teoría del Big Bang lo predice.

Journal Reference:

  1. S. Muller , A. Beelen, J. H. Black, S. J. Curran, C. Horellou, S. Aalto, F. Combes, M. Guelin, C. Henkel. A precise and accurate determination of the cosmic microwave background temperature at z=0.89Astronomy & Astrophysics, 2013 [link del paper original]

Los mitos mas conocidos sobre el espacio

Las películas que vemos en el cine, los comics y los libros que leemos ejercen una gran influencia en la imaginación y los conocimientos colectivos.  Tampoco es de de mucha ayuda las observaciones caseras que hacemos desde la tierra. Nuestra atmósfera varía los colores, distancias aparentes y posiciones de los astros (un efecto como el que se produce al ver a través del agua). Estos fenómenos hacen que la gente tenga ideas equivocadas sobre cómo es el espacio, la última frontera.

Cosas que por lógica creemos que un niño de preescolar puede responder, pero que en realidad inclusive a profesionales universitarios se les hace muy difícil razonar, debido a que dentro del transcurso de nuestras vidas hemos adquirido conocimientos y razonamientos que aunque parezcan lógicos no son verdaderos.

Así que les traigo un compendio de los mitos mas conocidos acerca del espacio…

Cinturón de asteroides

 Películas como El Imperio Contraataca o The Last Starfighter nos ilustran cinturones de asteroides en hora punta donde en espacios de unas cuantas centenas de metros hay cerca de 100 o mas asteroides  Naves espaciales que ignoran los principios de la inercia, efectuando complicadas y muy vistosas maniobras entre enormes asteroides. Esto es una visión muy equivocada de cómo son los cinturones de asteroides.
Nuestro cinturón de Kuiper entre las órbitas de Marte y Júpiter, está compuesto por cientos de miles de asteroides. Su tamaño va desde Ceres (casi 1.000 kilómetros de diámetro) hasta los pequeños de menos de un kilómetro. Según calculan los astrónomos de la  NASA, la distancia media entre cada asteroide, va de uno a tres millones de kilómetros. Si los asteroides estuvieran muy juntos, se producirían choques, estos choques despedirían a los asteroides a la profundidad del espacio. Por eso es muy difícil que los veamos juntos (aunque hay asteroides que orbitan de forma acompasada en verdaderos valses espaciales, asteroides con pequeñas lunas-asteroides a su alrededor, etc).
Y sobretodo no, no existen los “campos de asteroides”.

Agujeros negros malvados

Se nos suelen pintar a los agujeros negros como pozos de succión infinita. Es cierto que su atracción es tal, que hasta crean distorsiones en el tejido espaciotemporal. Pero esto no significa que sean incognoscibles o malvados. Existen varios tipos de agujeros negros que emiten diferentes radiaciones y sólo lo que ocurre más allá del horizonte de sucesos es una singularidad con la que podemos especular. El agujero negro es una de las formas en que una estrella supermasiva “se muere”. Sabemos que en el núcleo de nuestra Vía Láctea hay al menos un agujero negro, pero no debemos preocuparnos.
Si quieren saber un poquito mas acerca de los agujeros negros les recomiendo que pasen por esta entrada: ¿Qué es un agujero negro?
Incluso si sustituyéramos nuestro Sol por un agujero negro con su misma masa, la Tierra seguiría orbitando exactamente igual que lo hace ahora. Los agujeros negros deben cumplir con las leyes físicas conocidas (fuera de su horizonte de sucesos), es decir, deben cumplir con Newton y Einstein. Si tu nave interestelar se encuentra con un agujero negro, tienes mucho tiempo para girar un poquito y pasar de largo. Por tanto, es difícil que te ocurra lo que a la novia del protagonista de Pórtico, que se quedó “atrapada” orbitando un agujero negro. ¿Entonces cuándo se produce la espaguetización? Cuando te acercas lo suficiente como para no poder usar tus motores y salir de su atracción. Pero eso te puede pasar exactamente igual con nuestro Sol o con la Tierra misma.

El sol es amarillo

Decimos que el Sol es amarillo porque lo solemos ver amarillo. Cuando amanece o anochece, lo vemos rojo. Bueno, esto se debe al efecto de nuestra atmósfera: la composición química de la atmósfera atrapa las longitudes de onda más cortas de la luz visible, con lo que si al blanco del sol le restamos los azules y violetas, nos queda un toque más amarillo o rojo. Si salimos de nuestra atmósfera, a unos 100 km de la superficie de esta bola azul, veríamos al sol con su color verdaderoel blanco.

El cielo de Marte es rojo

Sin duda esta es una de mis favoritas. En Crónicas Marcianas, incluso se ve a Rock Hudson en camiseta de manga corta: si Marte es árido y rojo, es que hace calor. (No, no hace calor, de hecho, hace mucho frío). Lo cierto es que a Marte le llega aproximadamente la mitad de luz solar (radiación solar) que a la Tierra. La composición de su atmósfera, fundamentalmente CO2, hace que el cielo tenga color blanco. La combinación de lo blanco, las partículas en suspensión que pueda haber por tormentas de arena, y la poca luz solar que llega, nos pintaría un Marte que no llega a estar en penumbra, pero casi, como si permanentemente hubiera un eclipse de Sol. 
¿Entonces cómo es que en las fotos de Marte que aparecen en los dominicales se vea el cielo rojo? Esas fotos están coloreadas. Suena a explicación tonta, pero es la verdad.

La re-entrada a la atmósfera terrestre

Cuando las naves espaciales entran en la atmósfera, películas como Apolo 13, nos pintan un panorama poco apetecible: muchas vibraciones y una bola de fuego tiene a los astronautas pendientes de que los tornillos no se sueltenLa culpa de esto no es de la atmósfera, sino del presupuesto de la NASA. Si se utilizaran motores para compensar la atracción gravitatoria en sentido opuesto, la re-entrada podría realizarse más lentamente.
La bola de fuego que solemos ver, resulta de la ignición del aire comprimido que está delante de la nave. Cuando la nave va a mucha velocidad, el aire se comprime produciendo calor, el calor puede ser tal, que prenda fuego al aire. Si la nave tuviera combustible para la re-entrada podría venir más despacio, sin producir llamaradas. El problema es que cada kilo de carga que subimos al espacio es muy caro, por eso hacemos naves muy resistentes al calor.
Maldito presupuesto…!! 

En Marte no llueve

 La atmósfera marciana tiene una leve traza de vapor de agua. Es muy poca cantidad, pero con la baja temperatura precisa, se puede condensar. No habrá una gran llovizna en Marte, pero sí es posible tener niebla húmeda matinal en ciertas zonas. Como la superficie siempre está más fría que el aire, esta niebla se precipita sobre las rocas en forma de helada. Una de las primeras fotos de la sonda Viking, en los 70, mostraba helada matinal sobre las rocas. Los polos marcianos tienen color blanco de hielo de CO2 y de hielo de agua.

En la cara oculta de la Luna nunca da el Sol

Esta es muy fácil, inclusive parece mas que nada una inocentada. Podemos contestar que cuando se produce un eclipse de Sol, en la cara oculta de la Luna da el Sol. El mito de que ahí nunca da el Sol viene tal vez porque desde la Tierra siempre vemos la misma cara (siempre logramos sólo ver un 59% de la superficie lunar desde la tierra)esto se debe al acoplamiento de marea.

El espacio es muy frío

El espacio está casi vacío. No hay nada que pueda absorber el calor. La transmisión de calor se debe producir entre dos cuerpos en contacto. En el espacio no hay ningún tipo de aire que absorba el calor. Es más, un error frecuente en las naves espaciales populares es que no tienen paneles de irradiación. En el mundo real, lo primero que hace el transbordador espacial al salir al espacio es abrir su bahía de carga (las compuertas funcionan como emisores de calor). Si no lo hiciera, la temperatura de la nave aumentaría de forma constante matando a los astronautas.
Si no recibes calor de una estrella cercana, la poquísima cantidad de hidrógeno que hay en el vacío espacial acabaría por robarte todo el calor, pero le hace falta bastante tiempo. Así que si sales despedido al espacio no te congelarás inmediatamente.
 

Todo lo relacionado con el Big Bang

Todo conocimiento popular relacionado con el Big Bang es impreciso o simplemente falso. En particular, aquello de que se produce un estallido con origen en un punto superdenso. Es curioso que la gente caiga continuamente en el error, ya que es una de las pocas cosas que está comprobada empíricamente (y desde hace muchas décadas). No pudo haber una explosión en un punto concreto, porque todos los objetos (de masa bariónica al menos) del universo, se alejan unos de otros. Es difícil tener una imagen mental de esto, pero el Big Bang ocurrió en todas partes al mismo tiempo.
No me eches la culpa, el corrimiento al rojo demuestra que los objetos se alejan unos de otros mutuamente. Si bien es cierto que en el espacio muy profundo, en el espacio joven, aparecen las galaxias “muy cercanas” unas a otras, esto ocurre en todas las direcciones. Así que nos podemos imaginar un espacio viejo en cualquier punto de referencia aleatorio y un espacio cada vez más joven según nos alejamos de ese punto aleatorio. Esto ocurre en cualquier lugar y momento del universo.
Como el Big Bang es una singularidad cuántica, en la que por no existir no existía ni el tiempo, simplemente somos incapaces de saber qué pasó. 

La temperatura de los Meteoritos

Cuando un meteorito cae a la Tierra, no esta al rojo vivo, como se cree; de hecho, muchos llegan al suelo completamente congelados. Esto es porque en el espacio hay -273ºC de Temperatura, mas o menos. La fricción contra la atmósfera terrestre calienta y disuelve las capas exteriores del meteoro, pero nunca llega a calentar el centro debido a que la roca no es buena conductora del calor, y a medida que se acerca a la superficie la atmósfera se hace mas densa y lo frena lo suficiente como para que vuelva a enfriar su superficie.

La estrella mas brillante del cielo nocturno

La Estrella Polar no es la mas brillante del cielo, como se cita siempre en las películas cursis, de bajo presupuesto, etc. El importante honor le corresponde a Sirius, que brilla casi el doble, pero que no tiene la gracia de estar tan cerca del Polo Norte Celestial. Y aunque lo fuera, otro echo importante se ignora: la Estrella Polar no es una estrella, son varias que se van turnando para ocupar el lugar privilegiado. Hoy le toca a Polaris, que comenzara a alejarse del polo en el año 2100 y no volverá al puesto hasta dentro de unos 25.000 años después. 

Si conocen algunos otros que no se encuentran en la entrada, escriban un comentario con la descripción del mito y lo agregare gustosamente…

No olviden comentar….!!

¿Qué es un agujero negro?

Lo que muchas personas imaginan cuando se les habla de un Agujero Negro es que es un gran “hoyo” en el espacio por el cual entran cuerpos que nunca salen debido a que este “hoyo” tiene una profundidad indefinida o infinita… Esa idea no esta tan lejos de la realidad, solo que deben de corregirse algunos detalles que aquí veremos…

Para entender lo que es un agujero negro empecemos por una estrella como el Sol. El Sol tiene un diámetro de 1.390.000 kilómetros y una masa 330.000 veces superior a la de la Tierra. Teniendo en cuenta esa masa y la distancia de la superficie al centro se demuestra que cualquier objeto colocado sobre la superficie del Sol estaría sometido a una atracción gravitatoria 28 veces superior a la gravedad terrestre en la superficie.

Una estrella corriente conserva su tamaño normal gracias al equilibrio entre una altísima temperatura central, que tiende a expandir la sustancia estelar, y la gigantesca atracción gravitatoria, que tiende a contraerla y estrujarla.

Si en un momento dado la temperatura interna desciende, la gravitación se hará dueña de la situación. La estrella comienza a contraerse y a lo largo de ese proceso la estructura atómica del interior se desintegra. En lugar de átomos habrá ahora electrones, protones y neutrones sueltos. La estrella sigue contrayéndose hasta el momento en que la repulsión mutua de los electrones contrarresta cualquier contracción ulterior.

La estrella es ahora una «enana blanca». Si una estrella como el Sol sufriera este colapso que conduce al estado de enana blanca, toda su masa quedaría reducida a una esfera de unos 16.000 kilómetros de diámetro, y su gravedad superficial (con la misma masa pero a una distancia mucho menor del centro) sería 210.000 veces superior a la de la Tierra.

En determinadas condiciones la atracción gravitatoria se hace demasiado fuerte para ser contrarrestada por la repulsión electrónica. La estrella se contrae de nuevo, obligando a los electrones y protones a combinarse para formar neutrones y forzando también a estos últimos a apelotonarse en estrecho contacto. La estructura neutrónica contrarresta entonces cualquier ulterior contracción y lo que tenemos es una «estrella de neutrones», que podría albergar toda la masa de nuestro sol en una esfera de sólo 16 kilómetros de diámetro. La gravedad superficial sería 210.000.000.000 veces superior a la que tenemos en la Tierra.

En ciertas condiciones, la gravitación puede superar incluso la resistencia de la estructura neutrónica. En ese caso ya no hay nada que pueda oponerse al colapso. La estrella puede contraerse hasta un volumen cero y la gravedad superficial aumentar hacia el infinito.

Según la teoría de la relatividad, la luz emitida por una estrella pierde algo de su energía al avanzar contra el campo gravitatorio de la estrella. Cuanto más intenso es el campo, tanto mayor es la pérdida de energía, lo cual ha sido comprobado experimentalmente en el espacio y en el laboratorio.

La luz se pierde en un agujero negro

La luz emitida por una estrella ordinaria como el Sol pierde muy poca energía. La emitida por una enana blanca, algo más; y la emitida por una estrella de neutrones aún más. A lo largo del proceso de colapso de la estrella de neutrones llega un momento en que la luz que emana de la superficie pierde toda su energía y no puede escapar. Por eso es que se dice que ni la luz puede escapar de la fuerza gravitacional de un agujero negro.

Un objeto sometido a una compresión mayor que la de las estrellas de neutrones tendría un campo gravitatorio tan intenso, que cualquier cosa que se aproximara a él quedaría atrapada y no podría volver a salir. Es como si el objeto atrapado hubiera caído en un agujero infinitamente hondo y no cesase nunca de caer. Y como ni siquiera la luz puede escapar, el objeto comprimido será negro. Literalmente, un «agujero negro». 

Entonces podemos resumir que un agujero negro, no es un agujero, es una estrella que tiene un campo gravitatorio tan grande que nada que este cerca de ella puede salir de su superficie, ni siquiera la luz, por tanto es un objeto comprimido completamente negro.

Hoy día los astrónomos están encontrando pruebas de la existencia de agujeros negros en distintos lugares del universo…

Y mas recientemente es mas que probable que exista un agujero negro supermasivo en el centro de todas las galaxias que conocemos… Incluida la vía Lactea