Archivo de la categoría: Partículas

La Ciencia de la Invisibilidad

Todos, absolutamente todos hemos estado en algún momento de nuestra existencia en situaciones absolutamente bochornosas, es completamente inevitable. Muchos nos hemos tropezado para luego caer estrepitosamente, chocar el auto de nuestros padres, olvidarte del aniversario de tu pareja, llamar “mama”  a alguna de tus profesoras (algo traumatico), en fin, un montón de situaciones que nadie quisiera experimentar.

Es probable que dentro de unos años te olvides de lo que hiciste un verano, del cumpleaños de tu hijo o hasta del nombre de tu marido, pero lo que nunca olvidarás son esos momentos embarazosos en los que te hubiera gustado que te tragara la tierra, o por lo menos ser invisible, que nadie te viera y así por lo menos no ser victima de las miradas asesinas de los agraviados y quizás una muerte próxima.

Aunque ser invisible no solamente serviría para escapar de alguna situación “difícil”. También, es el sueño de muchos ladrones, científicos locos, supervillanos y un montón mas de desequilibrados mentales.

Aunque seria una gran tentación para cualquier humano el poseer esa capacidad, podría hacer lo quisiera sin que nadie pudiera verlo… Algo que quebrantaría la moralidad de cualquier persona… Pero desde el punto de vista científico, ¿Es posible?

¿Realmente es posible hacernos invisibles o hacer invisible algún objeto?… ¿Existe mas de un método para conseguirlo?… ¿Que utilidades puede traernos la invisibilidad ademas de el uso militar?

Por ejemplo, en la famosa serie Star Trek IV: El viaje a casa, la tripulación del Enterprise se apropia de un crucero de batalla Klingon. A diferencia de las naves espaciales de la Flota Estelar de la Federación, las naves espaciales del imperio Klingon tienen un «dispositivo de ocultación» secreto que las hace invisibles a la luz o el radar, de modo que las naves de Klingon pueden deslizarse sin ser detectadas tras las naves espaciales de la Federación y tenderles emboscadas con impunidad. Este dispositivo de ocultación ha dado al imperio Klingon una ventaja  estratégica sobre la Federación de Planetas.

Nave Klingon

Pero, ¿Realmente es posible tal dispositivo? o ¿tan solo es una idea disparatada imposible de realizar? La invisibilidad ha sido siempre una de las maravillas de la ciencia ficción y de lo fantástico, desde las páginas de El hombre invisible al mágico manto de invisibilidad de los libros de Harry Potter, o el anillo en El señor de los anillos (mi preferido).

El Anillo Único – El Señor de los Anillos

Pero durante un siglo al menos, casi todos los físicos han descartado la posibilidad de mantos de invisibilidad o algo que se le parezca, afirmando lisa y  llanamente que son imposibles: violan las leyes de la óptica y no se adecuan a ninguna de las propiedades conocidas de la materia.

Pero hoy lo imposible puede hacerse posible.  Nuevos avances en metamateriales están obligando a una revisión importante de los libros de texto de óptica. Se han construido en el laboratorio prototipos operativos de tales materiales que han despertado un gran interés en los medios de comunicación, la industria y el ejército al hacer que lo visible se haga invisible.

La invisibilidad a través de la historia

La invisibilidad es quizá una de las ideas más viejas en la mitología antigua. Desde el comienzo de la historia escrita, las personas que se han encontrado solas en una noche procelosa se han sentido aterrorizadas por los espíritus invisibles de los muertos, las almas de los que desaparecieron hace tiempo que acechan en la oscuridad.

El héroe griego Perseo pudo acabar con la malvada Medusa armado con el yelmo de la invisibilidad.

Los generales de los ejércitos han soñado con un dispositivo de invisibilidad. Siendo invisible, uno podría atravesar las líneas enemigas y capturar al enemigo por sorpresa. Los criminales podrían utilizar la invisibilidad para llevar a cabo robos espectaculares.

La invisibilidad desempeñaba un papel central en la teoría de Platón de la ética y la moralidad. En su principal obra filosófica, La República, Platón narra el mito del anillo de Giges. El pobre pero honrado pastor Giges de Lidia entra en una cueva oculta y encuentra una tumba que contiene un cadáver que lleva un anillo de oro. Giges descubre que ese anillo de oro tiene el poder mágico de hacerle invisible. Pronto este pobre pastor queda embriagado con el poder que le da este anillo. Después de introducirse subrepticiamente en el palacio del rey, Giges utiliza su poder para seducir a la reina y, con la ayuda de esta, asesinar al rey y convertirse en el próximo rey de Lidia.

La moraleja que deseaba extraer Platón es que ningún hombre puede resistir la tentación de poder robar y matar a voluntad. Todos los hombres son corruptibles. La moralidad es una construcción social impuesta desde fuera. Un hombre puede aparentar ser moral en público para mantener su reputación de integridad y honestidad, pero una vez que posee el poder de la invisibilidad, el uso de dicho poder sería irresistible.

Platón

 (Algunos creen que esta moraleja fue la inspiración para la trilogía de El señor de los anillos de J. R. R. Tolkien, en la que un anillo que garantiza la invisibilidad a quien lo lleva es también una fuente del mal).

La invisibilidad es asimismo un elemento habitual en la ciencia ficción. En la serie Flash Gordon de la década de 1950, Flash se hace invisible para escapar al pelotón de fusilamiento de Ming el Despiadado. En las novelas y las películas de Harry Potter, Harry lleva un manto especial o “mágico” que le permite moverse por el colegio Hogwarts sin ser detectado.

La capa de la invisibilidad de Harry Potter

H.G. Wells dio forma concreta a esta mitología con su clásica novela El hombre invisible, en la que un estudiante de medicina descubre accidentalmente el poder de la cuarta dimensión y se hace invisible. Por desgracia, él utiliza este fantástico poder para su beneficio privado, empieza una oleada de crímenes menores, y al final muere tratando de huir desesperadamente de la policía.

El hombre invisible

Las ecuaciones de Maxwell y el secreto de la luz

Solo con la obra del físico escocés James Clerk Maxwell, uno de los gigantes de la física del siglo XIX, los físicos tuvieron una comprensión firme de las leyes de la óptica. Maxwell era, en cierto sentido, lo contrario de Michael Faraday.

Mientras que Faraday tenía un soberbio instinto experimental pero ninguna educación formal, Maxwell era un maestro de las matemáticas avanzadas. Destacó como estudiante de física matemática en  Cambridge, donde Isaac Newton había trabajado dos siglos antes. Newton había inventado el cálculo infinitesimal, que se expresaba en el lenguaje de las «ecuaciones diferenciales», que describen cómo los objetos experimentan cambios infinitesimales en el espacio y el tiempo.

James Clerk Maxwell

El movimiento de las ondas oceánicas, los fluidos, los gases y las balas de cañón podían expresarse en el lenguaje de las ecuaciones diferenciales. Maxwell tenía un objetivo claro: expresar los revolucionarios hallazgos de Faraday y sus campos de fuerza mediante ecuaciones diferenciales precisas.

Maxwell partió del descubrimiento de Faraday de que los campos eléctricos podían convertirse en campos magnéticos, y viceversa. Asumió las representaciones de Faraday de los campos de fuerza y las reescribió en el lenguaje preciso de las ecuaciones diferenciales, lo que dio lugar a uno de los más importantes conjuntos de ecuaciones de la ciencia moderna. constituyen un conjunto de ocho ecuaciones diferenciales de aspecto imponente. Cualquier físico e ingeniero del mundo tiene que jurar sobre ellas cuando llega a dominar el electromagnetismo en la facultad. 

A continuación, Maxwell se hizo la pregunta decisiva: si los campos magnéticos pueden convertirse en campos eléctricos y viceversa, ¿qué sucede si se están convirtiendo continuamente unos en otros en una pauta inacabable? Maxwell encontró que estos campos electromagnéticos crearían una onda muy parecida a las olas en el mar. Calculó la velocidad de dichas ondas y, para su asombro, ¡descubrió que era igual a la velocidad de la luz! En 1864, tras descubrir este hecho, escribió proféticamente: «Esta velocidad es tan próxima a la de la luz que parece que tenemos una buena razón para concluir que la propia luz… es una perturbación electromagnética». 

Fue quizá uno de los mayores descubrimientos de la historia humana. El secreto de la luz se revelaba por fin. Evidentemente, Maxwell se dio cuenta de que todas las cosas, el brillo del amanecer, el resplandor de la puesta de Sol, los extraordinarios colores del arco iris y el firmamento estrellado podían describirse mediante las ondas que garabateaba en una hoja de papel.

Hoy entendemos que todo el espectro electromagnético —desde el radar a la televisión, la luz infrarroja, la luz ultravioleta, los rayos X, las microondas y los rayos gamma— no es otra cosa que ondas de Maxwell, que a su vez son vibraciones de los campos de fuerza de Faraday.  Al comentar la importancia de las ecuaciones de Maxwell, Einstein escribió que son «las más profundas y fructíferas que ha experimentado la física desde la época de Newton».

La teoría de la luz de Maxwell y la teoría atómica dan explicaciones sencillas de la óptica y la invisibilidad. En un sólido, los átomos están fuertemente concentrados, mientras que en un líquido o en un gas las moléculas están mucho más espaciadas. La mayoría de los sólidos son opacos porque los rayos de luz no pueden atravesar la densa matriz de átomos en un sólido, que actúa como un muro de ladrillo. Por el contrario, muchos líquidos y gases son transparentes porque la luz pasa con más facilidad entre los grandes espacios entre sus átomos, un espacio que es mayor que la longitud de onda de la luz visible.

Existen excepciones importantes a esta regla. Muchos cristales son, además de sólidos, transparentes. Pero los átomos de un cristal están dispuestos en una estructura reticular precisa, ordenados en filas regulares, con un espaciado regular entre ellos. Así, un haz luminoso puede seguir muchas trayectorias a través de una red cristalina. Por consiguiente, aunque un cristal está tan fuertemente empaquetado como cualquier sólido, la luz puede abrirse camino a través del cristal.

Bajo ciertas condiciones, un objeto sólido puede hacerse transparente si los átomos se disponen al azar. Esto puede hacerse calentando ciertos materiales a alta temperatura y enfriándolos rápidamente. El vidrio, por ejemplo, es un sólido con muchas propiedades de un líquido debido a la disposición aleatoria de sus átomos. Algunos caramelos también pueden hacerse transparentes con este método. Es evidente que la invisibilidad es una propiedad que surge en el nivel atómico, mediante las ecuaciones de Maxwell, y por ello sería extraordinariamente difícil, si no imposible, de reproducir utilizando métodos ordinarios.

Para hacer invisible a Harry Potter habría que licuarlo, hervirlo para crear vapor, cristalizarlo, calentarlo de nuevo y luego enfriarlo, todo lo cual sería muy difícil de conseguir incluso para un mago.

El ejército, incapaz de crear aviones invisibles, ha intentado hacer lo que más se les parece: crear tecnología furtiva, que hace los aviones invisibles al radar. La tecnología furtiva se basa en las ecuaciones de Maxwell para conseguir una serie de trucos. Un caza a reacción furtivo es perfectamente visible al ojo humano, pero su imagen en la pantalla de un radar enemigo solo tiene el tamaño que correspondería a un pájaro grande. (La tecnología furtiva es en realidad una mezcla de trucos. Cambiando los materiales dentro del caza a reacción, reduciendo su contenido de acero y utilizando en su lugar plásticos y resinas, cambiando los ángulos de su fuselaje, re-ordenando sus toberas, y así sucesivamente, es posible hacer que los haces del radar enemigo que inciden en el aparato se dispersen en todas direcciones, de modo que nunca vuelven a la pantalla del radar enemigo.

Caza furtivo moderno F-35 Lightning II

Incluso con tecnología furtiva, un caza a reacción no es del todo invisible; lo que hace es desviar y dispersar tantas ondas de radar como es técnicamente posible).

Metamateriales e invisibilidad

Pero quizá el más prometedor entre los nuevos desarrollos que implican invisibilidad es un nuevo material exótico llamado  «metamaterial», que tal vez un día haga los objetos verdaderamente invisibles. Resulta irónico que la creación de metamateriales se considerara en otro tiempo imposible porque violaban las leyes de la óptica. Pero en 2006, investigadores de la Universidad de Duke en Durham, Carolina del Norte, y del Imperial College de Londres, desafiaron con éxito la sabiduría convencional y utilizaron metamateriales para hacer un objeto invisible a la radiación de microondas. Aunque hay aún muchos obstáculos que superar, ahora tenemos por primera vez en la historia un diseño para hacer invisibles objetos ordinarios. (La Agencia de Investigación de Proyectos Avanzados de Defensa [DARPA] del Pentágono financió esta investigación).

El potencial revolucionario de los metamateriales «cambiará por completo nuestro enfoque de la óptica y casi todos los aspectos de la electrónica. Algunos de estos metamateriales pueden hacer realidad hazañas que habrían parecido milagrosas hace solo unas décadas».

¿Qué son estos metamateriales? Son sustancias que tienen propiedades ópticas que no se encuentran en la naturaleza. Los metamateriales se crean insertando en una sustancia minúsculos implantes que obligan a las ondas electromagnéticas a, curvarse de formas heterodoxas. En la Universidad,de Duke los científicos insertaron en bandas,de cobre minúsculos circuitos eléctricos dispuestos,en círculos planos concéntricos (una forma,que recuerda algo a las resistencias de un horno,eléctrico).

Ejemplo de lo que seria un auto construido con metamateriales.

El resultado fue una mezcla sofisticada,de cerámica, teflón, compuestos de fibra y componentes,metálicos. Estos minúsculos implantes,en el cobre hacen posible curvar y canalizar de,una forma específica la trayectoria de la radiación,de microondas. Pensemos en cómo fluye un río alrededor de una roca. Puesto que el agua rodea fácilmente la roca, la presencia de la roca no se deja sentir aguas abajo. Del mismo modo, los metamateriales pueden alterar y curvar continuamente la trayectoria de las microondas de manera que estas fluyan alrededor de un cilindro, por ejemplo, lo que haría esencialmente invisible a las microondas todo lo que hay dentro del cilindro.

Si el material puede eliminar toda la reflexión y todas las sombras, entonces puede hacer un objeto totalmente invisible para dicha forma de, radiación. Los científicos demostraron satisfactoriamente,este principio con un aparato hecho de diez anillos,de fibra óptica cubiertos con elementos de,cobre. Un anillo de cobre en el interior del aparato,se hacía casi invisible a la radiación de microondas,pues solo arrojaba una sombra, minúscula.

En el corazón de los metamateriales está su capacidad para manipular algo llamado «índice de refracción ». La refracción es la curvatura que experimenta la trayectoria de la luz cuando atraviesa un medio transparente. Si usted mete la mano en el agua, o mira a través de los cristales de sus gafas, advertirá que el agua y el cristal distorsionan y curvan la trayectoria de la luz ordinaria.

Manipulación de la Refracción por parte de un Metamaterial.

La razón de que la luz se curve en el cristal o en el agua es que la luz se frena cuando entra en un medio transparente denso. La velocidad de la luz en el vacío es siempre la misma, pero la luz que viaja a través del agua o del cristal debe atravesar billones de átomos y con ello se frena. (El cociente entre la velocidad de la luz en el vacío y la velocidad más lenta de la luz entro de un medio es lo que se llama índice de refracción. Puesto que la luz se frena en el vidrio, el índice de refracción de este es siempre mayor que 1,0).

Por ejemplo, el índice de refracción es 1,0 para el vacío, 1,0003 para el aire, 1,5 para el vidrio y 2,4 para el diamante. Normalmente, cuanto más denso es el medio, mayor es el grado de curvatura, y mayor el índice de refracción. Un efecto familiar del índice de refracción es un espejismo. Si usted viaja en coche un día tórrido y mira hacia delante al horizonte, verá cómo la carretera parece brillar y crea la ilusión de un lago donde se refleja la luz.

Un ejemplo de Espejismo en el Desierto.

En el desierto pueden verse a veces las siluetas de ciudades y montañas distantes en el horizonte. Esto se debe a que el aire caliente que sube del asfalto o del suelo del desierto tiene una densidad menor que el aire normal, y por lo tanto un índice de refracción menor que el del aire más frío que le rodea; por ello, la luz procedente de objetos distantes puede refractarse en el asfalto hacia sus ojos y producirle la ilusión de que está viendo objetos distantes.

Normalmente, el índice de refracción es constante. Un fino haz de luz se curva cuando entra en el vidrio y luego sigue una línea recta. Pero supongamos por un momento que pudiéramos controlar el índice de refracción a voluntad, de modo que pudiera cambiar de forma continua en cada punto del vidrio. A medida que la luz se moviera en este nuevo material, se iría curvando y alabeando en nuevas direcciones, en una trayectoria que serpentearía a través de la sustancia.

Si pudiéramos controlar el índice de refracción dentro de un metamaterial de modo que la luz rodeara a un objeto, entonces el objeto se haría invisible. Para ello, este metamaterial debería tener un índice de refracción negativo, lo que cualquier libro de texto de óptica dice que es imposible.

Concepto de Refracción.

(Los metamateriales fueron teorizados por primera vez en un artículo del físico soviético Víctor Veselago en 1967, y se demostró que tenían propiedades ópticas extrañas, tales como un índice de refracción negativo y efecto Doppler inverso. Los metamateriales son tan extraños y aparentemente absurdos que en otro tiempo se pensó que eran imposibles de construir. Pero en los últimos años se han construido metamateriales en el laboratorio, lo que ha obligado a los físicos reacios a reescribir los libros de texto de óptica).

Aunque un verdadero manto de invisibilidad es posible dentro de las leyes de la física, como reconocerán la mayoría de los físicos, aún quedan formidables obstáculos técnicos antes de que esta tecnología pueda extenderse para trabajar con luz visible y no solo radiación de microondas.

En general, las estructuras internas implantadas dentro del metamaterial deben ser más pequeñas que la longitud de onda de la radiación. Por ejemplo, las microondas pueden tener una longitud de onda de unos 3 centímetros, de modo que para que un metamaterial curve la trayectoria de las microondas debe tener insertados en su interior implantes minúsculos menores que 3 centímetros. Pero para hacer un objeto invisible a la luz verde, con una longitud de onda de 500 nanómetros (nm), el metamaterial debe tener insertadas estructuras que sean solo de unos 50 nanómetros de longitud, y estas son escalas de longitud atómica que requieren nanotecnología.

Escala de los Nanómetros y Micrómetros.

(Un nanómetro es una mil millonésima de metro. Aproximadamente cinco átomos pueden caber en un nanómetro). Este es quizá el problema clave al que se enfrentan nuestros intentos de crear un verdadero manto de invisibilidad. Los átomos individuales dentro de un metamaterial tendrían que ser modificados para curvar un rayo de luz como una serpiente.

Metamateriales para luz visible

La carrera ha empezado. Desde que se anunció que se han fabricado materiales en el laboratorio se ha producido una estampida de actividad en esta área, con nuevas ideas y sorprendentes avances cada pocos meses. El objetivo es claro: utilizar nanotecnología para crear metamateriales que puedan curvar la luz visible, no solo las microondas. Se han propuesto varios enfoques, todos ellos muy prometedores. Uno de ellos es utilizar la tecnología ya disponible, es decir, tomar prestadas técnicas ya conocidas de la industria de semiconductores para crear nuevos metamateriales. Una técnica llamada «fotolitografía » está en el corazón de la miniaturización informática, y con ello impulsa la revolución de los ordenadores. Esta tecnología permite a los ingenieros colocar cientos de millones de minúsculos transistores en una pastilla de silicio no mayor que un pulgar.

La razón de que la potencia de los ordenadores se duplique cada dieciocho meses (lo que se conoce como ley de Moore) es que los científicos utilizan luz ultravioleta para «grabar» componentes cada vez más pequeños en un chip de silicio. Esta técnica es muy similar al modo en que se utilizan las plantillas para crear vistosas camisetas. (Los ingenieros de ordenadores empiezan con una delgada tableta de silicio y aplican sobre ella capas extraordinariamente delgadas de materiales diversos. Luego se coloca sobre la tableta una máscara plástica que actúa como una plantilla. Esta contiene los complejos perfiles de los cables, transistores y componentes de ordenador que constituyen el esqueleto básico del circuito. La tableta se baña entonces en radiación ultravioleta, que tiene una longitud de onda muy corta, y dicha radiación imprime la estructura en la tableta fotosensible. Tratando la tableta con gases y ácidos especiales, la circuitería completa de la máscara queda grabada en las zonas de la tableta que estuvieron expuestas a la luz ultravioleta. Este proceso crea una tableta que contiene centenares de millones de surcos minúsculos, que forman los perfiles de los transistores).

Un spinner utilizado en la fotolitografía.

Actualmente, los componentes más pequeños que se pueden crear con este proceso de grabado son de unos 53 nm (o unos 150 átomos de largo). Un hito en la búsqueda de la invisibilidad se alcanzó cuando esta técnica de grabado de tabletas fue utilizada por un grupo de científicos para crear el primer metamaterial que opera en el rango de la luz visible. Científicos en Alemania y en el Departamento de Energía de Estados Unidos anunciaron a principios de 2007 que, por primera vez en la historia, habían fabricado un metamaterial que funcionaba para luz roja. Lo «imposible» se había conseguido en un tiempo notablemente corto. El físico Costas Soukoulis del Laboratorio Ames en Iowa, junto con Stefan Linden, Martin Wegener y Gunnar Dolling de la Universidad de Karlsruhe, en Alemania, fueron capaces de crear un metamaterial que tenía un índice de —0,6 para la luz roja, con una longitud de onda de 780 nm.

Hasta ahora esos científicos han conseguido un índice de refracción negativo solo para luz roja. Su próximo paso sería utilizar esta tecnología para crear un metamaterial que curvara la luz roja enteramente alrededor de un objeto, haciéndolo invisible a dicha luz. Estas líneas de investigación pueden tener desarrollos futuros en el área de los «cristales fotónicos».  El objetivo de la tecnología de cristales fotónicos es crear un chip que utilice luz, en lugar de electricidad, para procesar información.

Esto supone utilizar nanotecnología para grabar minúsculos componentes en una tableta, de modo que el índice de refracción cambie con cada componente. Los transistores que utilizan luz tienen varias ventajas sobre los que utilizan electricidad. Por ejemplo, las pérdidas de calor son mucho menores en los cristales fotónicos. (En los chips de silicio avanzados, el calor generado es suficiente para freír un huevo. Por ello deben ser enfriados continuamente o de lo contrario fallarán, pero mantenerlos fríos es muy costoso).

No es sorprendente que la ciencia de los cristales fotónicos sea ideal para los metamateriales, puesto que ambas tecnologías implican la manipulación del índice de refracción de la luz en la nanoescala.

La Invisibilidad plasmónica

Para no quedarse atrás, otro grupo anunció a mediados de 2007 que había creado un metamaterial que curva luz visible utilizando una tecnología completamente diferente, llamada «plasmónica». Los físicos Henri Lezec, Jennifer Dionne y Harry Atwater del Instituto de Tecnología de California (Caltech) anunciaron que habían creado un metamaterial que tenía un índice negativo para la más difícil región azul-verde del espectro visible de la luz.

El objetivo de la plasmónica es «estrujar» la luz de modo que se puedan manipular objetos en la nanoescala, especialmente en la superficie de metales. La razón de que los metales conduzcan la electricidad es que los electrones están débilmente ligados a los átomos del metal, de modo que pueden moverse con libertad a lo largo de la superficie de la red metálica. La electricidad que fluye por los cables de su casa representa el flujo uniforme de estos electrones débilmente ligados en la superficie metálica. Pero en ciertas condiciones, cuando un haz luminoso incide en la superficie metálica, los electrones pueden vibrar al unísono con el haz luminoso original, lo que da lugar a movimientos ondulatorios de los electrones en la superficie metálica (llamados plasmones), y estos movimientos ondulatorios laten al unísono con el haz luminoso original.

En física, un plasmón es un cuanto de oscilación del plasma.

Y lo que es más importante, estos plasmones se pueden «estrujar» de modo que tengan la misma frecuencia que el haz original (y con ello lleven la misma información) pero tengan una longitud de onda mucho más pequeña. En principio se podrían introducir estas ondas estrujadas en nanocables.

Como sucede con los cristales fotónicos, el objetivo último de la plasmónica es crear chips de ordenador que computen utilizando luz en lugar de electricidad. El grupo del Caltech construyó su metamaterial a partir de dos capas de plata, con un aislante de silicio-nitrógeno en medio (de un espesor de solo 50 nm), que actuaba como una «guía de onda» que podía guiar la dirección de las ondas plasmónicas.

Luz láser entra y sale del aparato a través de dos rendijas horadadas en el metamaterial. Analizando los ángulos a los que se curva la luz láser cuando atraviesa el metamaterial, se puede verificar que la luz está siendo curvada mediante un índice negativo.

El futuro de los metamateriales

Los avances en metamateriales se acelerarán en el futuro por la sencilla razón de que ya hay un gran interés en crear transistores que utilicen haces luminosos en lugar de electricidad. Por consiguiente, la investigación en invisibilidad puede «subirse al carro» de la investigación en curso en cristales fotónicos y plasmónica para crear sustitutos para el chip de silicio. Ya se están invirtiendo centenares de millones de dólares a fin de crear sustitutos para la tecnología del silicio, y la investigación en metamateriales se beneficiará de estos esfuerzos de investigación. Debido a los grandes avances que se dan en este campo cada pocos meses, no es sorprendente que algunos físicos piensen que algún tipo de escudo de invisibilidad puede salir de los laboratorios en unas pocas décadas.

Por ejemplo, los científicos confían en que en los próximos años serán capaces de crear metamateriales que puedan hacer a un objeto totalmente invisible para una frecuencia de luz visible, al menos en dos dimensiones. Hacer esto requerirá insertar minúsculos nanoimplantes ya no en una formación regular, sino en pautas sofisticadas, de modo que la luz se curve suavemente alrededor de un objeto.

Curvatura de la luz sobre un objeto.

A continuación, los científicos tendrán que crear metamateriales que puedan curvar la luz en tres dimensiones, no solo en las superficies bidimensionales planas. La fotolitografía ha sido perfeccionada para hacer tabletas de silicio planas, pero crear metamateriales tridimensionales requerirá apilar tabletas de una forma complicada.

Después de eso, los científicos tendrán que resolver el problema de crear metamateriales que puedan curvar no solo una frecuencia, sino muchas. Esta será quizá la tarea más difícil, puesto que los minúsculos implantes que se han ideado hasta ahora solo curvan luz de una frecuencia precisa. Los científicos tal vez tendrán que crear metamateriales basados en capas, y cada capa curvará una frecuencia específica. La solución a este problema no está clara. En cualquier caso, una vez que se obtenga finalmente un escudo de invisibilidad, será probablemente un aparato complicado. El manto de Harry Potter estaba hecho de tela delgada y flexible, y volvía invisible a cualquiera que se metiese dentro.

Pero para que esto sea posible, el índice de refracción dentro de la tela tendría que estar cambiando constantemente de forma complicada mientras la tela se agitara, lo que no resulta práctico.

Lo más probable es que un verdadero «manto» de invisibilidad tenga que estar hecho de un cilindro sólido de metamateriales, al menos inicialmente. De esa manera, el índice de refracción podría fijarse dentro del cilindro. (Versiones más avanzadas podrían incorporar con el tiempo metamateriales que sean flexibles y puedan retorcerse, y aun así hacer que la luz fluya en la trayectoria correcta dentro de los metamateriales. De esta manera, cualquiera que estuviera en el interior del manto tendría cierta flexibilidad de movimientos).

Algunos han señalado un defecto en el escudo de invisibilidad: cualquiera que estuviese dentro no sería capaz de mirar hacia fuera sin hacerse visible.

Imaginemos a un Harry Potter totalmente invisible excepto por sus ojos, que parecerían estar flotando en el aire. Cualquier agujero para los ojos en el manto de invisibilidad sería claramente visible desde el exterior. Si Harry Potter fuera invisible se encontraría ciego bajo su manto de invisibilidad. (Una posible solución a este problema sería insertar dos minúsculas placas de vidrio cerca de la posición de los agujeros para los ojos. Estas placas de vidrio actuarían como «divisores de haz», que dividen una minúscula porción de la luz que incide en las placas y luego envía a luz a los ojos. De este modo, la mayor parte de la luz que incidiera en el manto fluiría a su alrededor, haciendo a la persona invisible, pero una minúscula cantidad de luz sería desviada hacia los ojos).

Por terribles que sean estas dificultadas, científicos e ingenieros son optimistas en que algún tipo de manto de invisibilidad pueda construirse en las próximas décadas.

Invisibilidad y nanotecnología

Como he mencionado antes, la clave para la invisibilidad puede estar en la nanotecnología, es decir, la capacidad de manipular estructuras de tamaño atómico de una mil millonésima de metro.

El nacimiento de la nanotecnología data de una famosa conferencia de 1959 impartida por el premio Nobel Richard Feynman ante la Sociedad Americana de Física, con el irónico título «Hay mucho sitio al fondo». En dicha conferencia especulaba sobre lo que podrían parecer las máquinas más pequeñas compatibles con las leyes de la física conocidas. Feynman era consciente de que podían construirse máquinas cada vez más pequeñas hasta llegar a distancias atómicas, y entonces podrían utilizarse los átomos para crear otras máquinas.

Richard Feynman.

Máquinas atómicas, tales como poleas, palancas y ruedas, estaban dentro de las leyes de la física, concluía él, aunque serían extraordinariamente difíciles de hacer.

La nanotecnología languideció durante años porque manipular átomos individuales estaba más allá de la tecnología de la época. Pero en 1981 los físicos hicieron un gran avance con la invención del microscopio de efecto túnel, que les valió el premio Nobel de Física a los científicos Gerd Binning y Heinrich Rohrer que trabajaban en el Laboratorio IBM en Zurich.

De repente, los físicos podían obtener sorprendentes «imágenes» de átomos individuales dispuestos como se presentan en los libros de química, algo que los críticos de la teoría atómica consideraban imposible en otro tiempo. Ahora era posible obtener magníficas fotografías de átomos alineados en un cristal o un metal. Las fórmulas químicas utilizadas por los científicos, con una serie compleja de átomos empaquetados en una molécula, podían verse a simple vista. Además, el microscopio de efecto túnel hizo posible la manipulación de átomos individuales.

Logo de la empresa IBM escrito con átomos.

De hecho, se escribieron las letras «IBM» tomando átomos de uno en uno, lo que causó sensación en el mundo científico. Los científicos ya no iban a ciegas cuando manipulaban átomos individuales, sino que realmente podían verlos y jugar con ellos.

El microscopio de efecto túnel es engañosamente simple. Como una aguja de fonógrafo que explora un disco, una sonda aguda pasa lentamente sobre el material a analizar. (La punta es tan aguda que consiste en un solo átomo). Una pequeña carga eléctrica se coloca en la sonda, y una corriente fluye desde la sonda, a través del material, hasta la superficie que hay debajo.

Secuencia de movimientos para el diseño del Logo.

La sonda es también suficientemente sensible para mover átomos individuales y crear «máquinas » sencillas a partir de átomos individuales. La tecnología está ahora tan avanzada que puede mostrarse un racimo de átomos en una pantalla de ordenador, y entonces, moviendo simplemente el cursor del ordenador, los átomos pueden moverse en la dirección que uno quiera. Se pueden manipular montones de átomos a voluntad, como si se estuviera jugando con bloques Lego.

Además de formar las letras del alfabeto utilizando átomos individuales, se pueden crear asimismo juguetes atómicos, tales como un ábaco hecho de átomos individuales.

Los átomos están dispuestos en una superficie con ranuras verticales. Dentro de estas ranuras verticales se pueden insertar buckybolas de carbono (que tienen la forma de un balón de fútbol, pero están hechas de átomos de carbono individuales). Estas bolas de carbono pueden moverse entonces arriba y abajo en cada ranura, con lo que se tiene un ábaco atómico. También es posible grabar dispositivos atómicos utilizando haces de electrones. Por ejemplo, científicos de la Universidad de Cornell han hecho la guitarra más pequeña del mundo, veinte veces más pequeña que un cabello humano, grabada en silicio cristalino. Tiene seis cuerdas, cada una de 100 átomos de grosor, y las cuerdas pueden ser pulsadas utilizando un microscopio de fuerzas atómicas. (Esta guitarra producirá música realmente, pero las frecuencias que produce están muy por encima del rango de audición humana).

De momento, la mayoría de estas «máquinas» nanotech son meros juguetes. Aún están por crear máquinas más complicadas con engranajes y cojinetes. Pero muchos ingenieros confían en que no está lejos el tiempo en que seremos capaces de producir verdaderas máquinas atómicas. (Las máquinas atómicas se encuentran realmente en la naturaleza. Las células pueden nadar libremente en el agua porque pueden agitar pelos minúsculos. Pero cuando se analiza la juntura entre el pelo y la célula se ve que es realmente una máquina atómica que permite que el pelo se mueva en todas direcciones. Así, una clave para desarrollar la nanotecnología es copiar a la naturaleza, que dominó el arte de las máquinas atómicas hace miles de millones de años).

Hologramas e Invisibilidad

Otra manera de hacer a una persona parcialmente invisible es fotografiar el escenario que hay detrás de ella y luego proyectar directamente esa imagen de fondo en la ropa de la persona o en una pantalla que lleve delante. Vista de frente parece que la persona se haya hecho transparente, que la luz haya atravesado de alguna manera su cuerpo.

«Se utilizaría para ayudar a los pilotos a ver a través del suelo de la cabina en una pista de aterrizaje, o a los conductores que tratan de ver a través de una valla para aparcar un automóvil». Una videocámara fotografía lo que hay detrás del manto. Luego esta imagen se introduce en un proyector de vídeo que ilumina la parte frontal del manto, de modo que parece que la luz ha pasado a través de la persona.

Prototipos del manto de camuflaje óptico existen realmente en el laboratorio. Si miramos directamente a una persona que lleve este manto tipo pantalla, parece que haya desaparecido, porque todo lo que vemos es una imagen de lo que hay tras la persona. Pero si movemos un poco los ojos, la imagen en el manto no cambia, lo que nos dice que es un fraude. Un camuflaje óptico más realista necesitaría crear la ilusión de una imagen 3D.

Esquema de un holograma.

Para ello se necesitarían hologramas. Un holograma es una imagen 3D creada mediante láseres (como la imagen 3D de la princesa Leia en La guerra de las galaxias). Una persona podría hacerse invisible si el escenario de fondo fuera fotografiado con una cámara holográfica especial y la imagen holográfica fuera luego proyectada a través de una pantalla holográfica especial colocada delante de la persona.

Alguien que estuviera enfrente de la persona vería la pantalla holográfica, que contiene la imagen 3D del escenario de fondo, menos la persona. Parecería que la persona había desaparecido. En lugar de dicha persona habría una imagen 3D precisa del escenario de fondo. Incluso si se movieran los ojos no se podría decir que lo que se estaba viendo era un fraude.

Estas imágenes 3D son posibles porque la luz láser es «coherente», es decir, todas las ondas están vibrando perfectamente al unísono. Los hologramas se generan haciendo que un haz láser coherente se divida en dos partes. La mitad del haz incide en una película fotográfica. La otra mitad ilumina un objeto, rebota en este y luego incide en la misma película fotográfica. Cuando estos dos haces interfieren en la película se crea una figura de interferencia que codifica toda la información que hay en la onda 3D original.

Cuando se revela la película, no dice mucho; es algo parecido a una intrincada figura de tela de araña con remolinos y líneas. Pero cuando se permite que un haz láser incida en esta película, súbitamente aparece como por arte de magia una réplica 3D exacta del objeto original. No obstante, los problemas técnicos que plantea la invisibilidad holográfica son formidables.

Un reto es crear una cámara holográfica que sea capaz de tomar al menos 50 fotogramas por segundo. Otro problema es almacenar y procesar toda la información. Finalmente, habría que proyectar esta imagen en una pantalla de modo que la imagen pareciera realista.

Invisibilidad vía la cuarta dimensión

Deberíamos mencionar también que una manera aún más sofisticada de hacerse invisible era mencionada por H. G. Wells en El hombre invisible, e implicaba utilizar el poder de la cuarta dimensión.

¿Sería posible salir de nuestro universo tridimensional y cernirnos sobre él, desde el punto de vista de una cuarta dimensión?

Como una mariposa tridimensional que se cierne sobre una hoja de papel bidimensional, seríamos invisibles a cualquiera que viviera en el universo por debajo de nosotros.

Un problema con esta idea es que todavía no se ha demostrado que existan dimensiones más altas. Además, un viaje hipotético a una dimensión más alta requeriría energías mucho más allá de cualquiera alcanzable con  nuestra tecnología actual. Como forma viable de crear invisibilidad, este método está claramente más allá de nuestro conocimiento y nuestra capacidad actuales.

Hasta la vista…. Si acaso me vuelven a ver… 

Las tecnologías actuales han logrado grandes avances pero aun no son lo suficientemente avanzadas como para crear una forma de invisibilidad carente de fallas. En las próximas décadas, o al menos dentro de este siglo, una forma de invisibilidad puede llegar a ser realidad. Dentro de un tiempo ya existirán las mantas de la invisibilidad como la que utiliza Harry Potter, aunque yo sigo prefiriendo el Anillo Único. 

Esta entrada participa en la XXXIX Edición del Carnaval de la Física, que esta siendo organizado en esta ocasión por el blog El zombi de Schrödinger. ]

Referencias |

 

Anuncios

La Teletransportación: ¿Realidad o ficción?

¿Quien no ha llegado tarde alguna vez a una cita importante?, puedo asegurar que usted amable lector al igual que yo hemos asistido tarde al colegio, la universidad, el trabajo, etc., etc., etc., y muchos etcéteras mas, el ritmo de vida que todos llevamos en esta sociedad nos ha obligado a “movernos rápido”, todos tenemos muchas cosas que hacer durante el día (que cada vez nos parece mas corto) y para poder cumplir con todo lo que debemos, siempre nos encontramos viajando de un lugar a otro lo mas rápido posible, para ello recurrimos a varios medios de transporte como lo son: las bicicletas, automóviles, motocicletas, autobuses, trenes, barcos y aviones.

Pero la mente humana se ha encargado de abrir nuevas vías,  que sean mucho mas rápidas y de ser posibles instantáneas para que de esa manera tengamos un poco mas de tiempo para cumplir con nuestro trajín diario. Y es en ese instante que aparece en escena la Teletransportación. 

¿Pero qué tal si pudiésemos reemplazar ese “movernos rápido” por un “movernos instantáneamente”?

ORIGEN DEL TERMINO 

Literalmente Teletransportación quiere decir: “desplazar a distancia”. Lo cual nosotros entendemos como un desplazamiento que se produce sin necesidad de establecer contacto físico directamente con el objeto para que este se mueva. 

El termino “Teletransportación”, fue acuñado en el año 1930 por un reconocido investigador y escritor de la época, un tal Charles Fort de origen estadounidense, quien se dedicaba al estudio de los hechos que la ciencia de la época no podía solucionar.

Fort utilizo esa palabra para describir una supuesta conexión entre unas misteriosas desapariciones y apariciones que sucedían en varias partes del mundo. 

TELETRANSPORTACIÓN Y CIENCIA FICCIÓN

Si se descubriera la forma de transportar al instante a una persona o un objeto de un lugar a otro, seria sin lugar a duda una tecnología que cambiara el curso de toda nuestra civilización. Aunque todos los medios de transporte (las industrias que sirven y en las que se basan dichos sistemas) que actualmente son utilizados serian completamente obsoletos.

Imagínese un día normal, la alarma de su smartphone no funciono, se despierta tarde, se levanta y se viste lo mas rápido que puede, apenas si se acomoda el cabello (si es que lo tiene), engulle a toda prisa una rebana de pan tostado y bebe un sorbo de su taza de café, pero espere… usted no tiene que conducir al trabajo, simplemente se sienta en su sillón y presiona un botón e instantáneamente se encontrara sentado en la silla de su oficina, frente al ordenador listo para empezar a trabajar. 

Seria algo increíble y muy cómodo que la vida real fuese de esa manera, pero es una pena que simplemente sea parte de una renombrada cinta del genero favorito de los Frikis (me incluyo)… La gloriosa Ciencia Ficción.

Quizas la idea de teletransportación mas temprana que incursionó en la ciencia ficción es el cuento “The man without a body” que traducido es: “El hombre sin un cuerpo”  escrito por David P. Mitchell que relata la historia de un científico que logra descubrir un metro para desarmar los átomos de su gato y transmitirlos por uno de sus cables de telégrafo  pero debido a su mala suerte, cuando intenta hacerlo con su cuerpo, la batería de su telégrafo se agota cuando solo había transmitido su cabeza, falleciendo en el intento.

Pero la sociedad en general no adopto la idea de la teletransportación hasta que la famosa serie de 1966,  Star Trek y sus películas fueron lanzadas al aire.

Y es en esa serie que se introdujo la figura de un dispositivo que hacia posible la teletransportación llamado “transportador”, teóricamente consiste en una técnica de escaneo que permite determinar la posición de las partículas del objeto, desmantelarlo y enviarla a través de un rayo a un puno definido donde se ensamblaran nuevamente.

Si nos ponemos a pensar en detalle todo lo que eso implica, llegamos a la conclusión de que el cuerpo de una persona esta compuesto por billones de billones de átomos. Y por cada uno de ellos, se debe de reproducir con absoluta exactitud su posición, el espín de cada electrón, cada una de las estructuras moleculares y ademas las formas en que todo esto interacciona entre si, como se esta moviendo, como están vibrando, todas las velocidades exactas y muchas cosas mas. 

Aunque un dato curioso es que en la serie de “Star Trek” se utilizo el concepto de la teletransportación  porque no se contaba con el presupuesto necesario como para recrear los despegues y aterrizajes de las naves en los planetas. 

Y mas recientemente, en la serie televisiva que ha causado una revolución en concepto de ciencia y comedia, “The Big Bang Theory”, en uno de sus episodios el físico teórico Sheldon Cooper define lo que es la teletransportación:

Aunque una máquina teletransportadora pudiera determinar el estado cuántico de la materia de un individuo, en realidad no estaría teletransportándolo, sino destruyéndolo en una ubicación para luego recrearlo en otra.

TELETRANSPORTACIÓN Y CIENCIA REAL

Aunque todo eso parezca una tarea prácticamente imposible de llevarse a cabo, desde el punto de vista científico, “no existiría ninguna limitación física natural por la cual no pudiese realizarse”.

Después de todo, si podemos efectuar dicho procedimiento con un único átomo (y más adelante veremos que puede hacerse y se ha hecho) no debería haber una limitante natural que nos impida hacerlo con un objeto macroscópico, como un ser humano. Lo que si existen, por lo menos en la actualidad, son limitaciones tecnológicas que nos impiden poner todo esto en práctica.

La principal limitación tecnológica que tenemos actualmente esta relacionada directamente con la capacidad de almacenamiento de información. Imaginemos que al convertir todos los átomos de nuestro cuerpo en energía  deberíamos de almacenar toda la información relativa a cada uno de estos, para poder recuperarse nuevamente en el lugar de destino. El problema directo es que el teletransporte de una sola persona generaría miles de millones de millones de terabytes de información. 

Para poder hacernos una idea mas exacta, si lográramos almacenar toda la información de una sola persona en varios discos de 1 Terabyte cada uno, necesitaríamos unos 500 millones de edificios del tamaño del Empire State para poder guardarlos.

Y como todo esto es ciencia pero sobretodo física, no podíamos dejar fuera de la fiesta al  físico mas famoso de todos los tiempos, si señores y señoras, me refiero a Don Albert Einstein…

Y a todo esto, ¿porque Einstein ?… Pues porque también podría existir una problemática tecnológica relacionada con la conversión de materia a energía. Como bien sabemos, y según fue expresado por la famosísima ecuación de Einstein “E=MC²”, la materia y la energía son la misma cosa, e incluso pueden transformarse y convertirse la una en la otra. Aunque parezca increíble, algo tan inofensivo como una galleta, podría contener tanta energía como una bomba atómica. La clave es cuán rápidamente dicha energía es liberada, lo cual en física se conoce como potencia, equivalente a energía por unidad de tiempo. Entonces, la conversión de la masa de un ser humano promedio a energía daría como resultado 40 veces la energía liberada en la más grande de las explosiones atómicas. Sin el medio tecnológico apropiado para controlar esta situación, el teletransporte podría resultar catastrófico.

Pero aparte de los problemas tecnológicos que de por si no son pocos, se le han de sumar unos no menos importantes, los problemas éticos o filosóficos.

Estos problemas filosóficos se resumen en una sola pregunta:

¿Qué es lo que se obtiene del otro lado al llevar a cabo el proceso de teletransporte?

¿Es la misma persona, o solamente una réplica cuántica perfecta? ¿Se está desarmando a la persona y armándola en otro lado; o acaso se la está desarmando, almacenando la información y luego creándola de cero nuevamente usando dicha información? ¿El teletransporte estaría matando al individuo y luego creando una copia exacta del mismo; o de alguna forma lo preserva y luego lo transporta a otro lado? Mientras se mantengan sin contestar, todas estas preguntas plantearían profundas cuestiones éticas y filosóficas muy relevantes.

LA MECÁNICA CUÁNTICA

Seguramente todos nosotros hemos oído hablar o hemos leído acerca de la  mecánica cuántica. Esta rama de la física, que representa un gigantesco avance con respecto a la física clásica newtoniana, plantea muchas situaciones sumamente exóticas y en extremo extrañas, algunas de las cuales incluso se contradicen radicalmente con nuestra lógica y sentido común. 

Uno de los principios fundamentales de la mecánica cuántica es lo que se conoce como la dualidad onda-partícula, la cual desbarató completamente nuestra forma previa de observar el mundo atómico. Previo al desarrollo de la mecánica cuántica, los físicos solían considerar al átomo como una unidad compuesta por un núcleo (que estaba formado por protones y neutrones) y una serie de electrones girando en torno a dicho núcleo en órbitas establecidas. Con el desarrollo de la mecánica cuántica, los físicos descubrieron que dichas “órbitas establecidas” no existían; en cambio, los electrones actuaban como ondas y hacían saltos cuánticos en sus movimientos aparentemente caóticos dentro de los átomos.

Otra de las exóticas propiedades de la mecánica cuántica es lo que se ha dado en conocer como el principio de incertidumbre de Heisenberg. Según este principio, no se puede conocer a la vez la velocidad y la posición exacta de un electrón, ni se puede conocer su energía exacta medida en un intervalo de tiempo dado. Sumado a la dualidad onda-partícula, este nos impide conocer la posición exacta de los electrones que orbitan al núcleo; solo podemos encontrar diferentes intensidades de onda y hablar de la probabilidad de encontrar un electrón concreto en cualquier lugar y cualquier instante de la misma.

Si tomamos en consideración la dualidad onda-partícula y el principio de incertidumbre, la mecánica cuántica nos dice entonces que en el nivel cuántico se violan todas las leyes básicas de sentido común: los electrones pueden desaparecer y reaparecer en otro lugar diferente, y también pueden estar en muchos lugares al mismo tiempo. De esta forma, los electrones podrían experimentar a nivel cuántico algo muy similar al proceso de teletransporte.

Mientras que para los electrones resulta sumamente sencillo, incluso natural, desaparecer en un lado y reaparecer en otro, trasladado a escalas macroscópicas la posibilidad de que esto mismo suceda es increíblemente remota. Aunque dicha posibilidad existe y está permitida por las leyes físicas, habría que esperar un tiempo muchísimo mayor que la edad del Universo para que ocurriera. Además, en un cuerpo humano formado por billones y billones de átomos, incluso si los electrones están danzando y saltando en su viaje alrededor del núcleo, hay tantos de ellos que sus movimientos se promedian. De hecho, a grandes rasgos, esta es la razón por la cual en nuestro nivel las sustancias parecen sólidas y permanentes.

Si bien todos estos fenómenos son sumamente interesantes y nos permiten pensar que las leyes naturales del Universo no prohíben el teletransporte, lejos se encuentran de las formas de teletransporte que nos serían útiles. Pero no nos desilusionemos y busquemos que otras opciones podemos tomar en cuenta…

EL ENTRELAZAMIENTO CUÁNTICO

Traten de imaginarse un fenómeno tan exótico y raro, que inclusive el propio Einstein tuvo que recurrir a la palabra “fantasmal” para describir a grandes rasgos su funcionamiento. El fenómeno al que me refiero se conoce como entrelazamiento cuántico, y es una de las propiedades más extrañas de la mecánica cuántica. Tan extraña es que solamente algunos pocos “elegidos” consiguen comprender realmente las muy complejas y extensas matemáticas detrás de dicha propiedad.

Explicado de forma sencilla, el entrelazamiento cuántico funciona así:  En primer lugar se deben tomar dos electrones (o cualquier partícula subatómica que les guste) en estado de coherencia, es decir, que cuenten con las mismas propiedades y vibren al unísono. Luego, aunque dichos electrones sean separados por inmensas distancias, incluso distancias tan grandes que la luz no consiga viajar de un electrón al otro, estos permanecerán en sincronización ondulatoria, y cualquier modificación que se realice sobre las propiedades de uno de los electrones, se reflejará instantáneamente en el otro electrón remoto.

Inclusive si las partículas se encuentran separadas por años luz de distancia, seguirá existiendo una onda invisible que las conecta, como si hubiese algún tipo de conexión profunda que las vincula, como si tuviesen conciencia o un alma propia. El mismo Einstein solía denominar a este fenómeno, de forma burlona, como una “fantasmal acción a distancia”.

En la década de 1980, un equipo científico de Francia probó experimentalmente este fenómeno utilizando dos detectores separados por 13 metros de distancia y midiendo los espines de fotones emitidos por átomos de calcio. Increíblemente, los resultados concordaron por completo con la teoría cuántica: aún estando separados, cuando se modificaban las propiedades de uno de los fotones, dicha modificación se reflejaba instantáneamente en el otro fotón, como si algo desconocido los mantuviese unidos y comunicase esa información entre ellos.

En el año 1993, científicos de IBM demostraron que era físicamente posible teletransportar objetos, al menos a nivel atómico, usando el entrelazamiento cuántico. En realidad lo que se transporta no es el objeto en sí, sino toda la información contenida dentro del mismo. Desde entonces los físicos han conseguido teletransportar fotones e incluso átomos enteros utilizando las propiedades del entrelazamiento cuántico, en lo que se ha dado a conocer como “teletransporte cuántico”.

Con la utilización de este método se han logrado increíbles avances recientes en relación con el teletransporte. En el año 2004 físicos de la Universidad de Viena teletransportaron partículas de luz a una distancia de 600 metros. En el mismo año, se consiguió el teletransporte cuántico no de fotones de luz, sino de átomos reales (puntualmente tres átomos de berilio), lo cual nos acerca a un dispositivo de teletransporte más realista y útil. En el año 2006 se logró otro avance espectacular: el primer teletransporte de un objeto macroscópico. Un equipo de físicos consiguió entrelazar un haz luminoso con un gas de átomos de cesio, el cual involucraba billones y billones de átomos. Luego codificaron la información contenida dentro de pulsos de láser y fueron capaces de teletransportar esa información a los átomos de cesio a una distancia de casi medio metro.

En el año 2012, investigadores europeos batieron el récord hasta entonces vigente pues lograron teletransportar fotones a una distancia de 143 kilómetros. Así que podemos decir que cada vez estamos mas cerca…

TELETRANSPORTE Y EL CONDENSADO DE BOSE-EINSTEIN

Debido a que lograr un estado de entrelazamiento cuántico entre objetos plantea inmensas dificultades, los físicos comenzaron a explorar otras posibilidades para el teletransporte de objetos sin la necesidad de recurrir al entrelazamiento. En el año 2007, finalmente se consiguió desarrollar un nuevo esquema de teletransporte, basado en un nuevo estado de la materia denominado “condensado de Bose-Einstein” (o BEC).

En la naturaleza se puede encontrar la temperatura más fría en el espacio exterior, la cual corresponde a 3°K por encima del cero absoluto (esto se debe al calor residual del Big Bang que aún llena el Universo). En cambio,un BEC se encuentra a una millonésima de mil millonésima de grado sobre el cero absoluto, lo más que podemos acercarnos a este último. Cuando un objeto se enfría hasta alcanzar casi el cero absoluto, todos sus átomos se ponen en el estado de energía más baja, de modo que comienzan a vibrar al unísono y se hacen coherentes entre sí.

El nuevo dispositivo de teletransporte funcionaría entonces de la siguiente manera. Se toma un conjunto de átomos de rubidio super-fríos en un estado BEC. Entonces se aplica al BEC un haz de materia, también compuesto por átomos de rubidio. Estos últimos átomos también“quieren ponerse” en el estado de energía más baja, así que ceden su exceso de energía en forma de un pulso de luz. Este haz de luz, que contiene toda la información cuántica de la materia original, se envía a través de un cable de fibra óptica. Por último, el haz de luz incide sobre otro BEC, que transforma el haz de luz en el haz de materia original.

Este nuevo método de teletransporte es sumamente prometedor, puesto que se evita el muy complicado entrelazamiento de átomos. De cualquier modo, las cosas no son tan sencillas como parecerían: este método también tiene sus problemáticas, principalmente por depender de las propiedades de los BEC, que son muy difíciles de recrear en el laboratorio.

QUE PODEMOS ESPERAR

Como nos hemos dado cuenta, la teletransportación esta un poco lejos de hacerse realidad debido a que aun tenemos problemas técnicos muy difíciles de superar, pero al paso en el que la tecnología esta evolucionando si podemos asegurar que llegara el día en el que teletransportarse sea tan común y ordinario como leer la ultima notificación de nuestra red social favorita. Quizas solo necesitemos de unos cuantos siglos o quizás de un tiempo mucho mayor.

Falta aun mucho por descubrir, mucho por hacer y demasiado por discutir.

Sabemos que actualmente se requieren los laboratorios y el instrumental más avanzado del mundo para teletransportar tan solo algunos átomos. Los físicos confían que en las próximas décadas se pueda realizar el teletransporte de objetos más complejos, como moléculas o incluso algún virus. Pero nosotros no viviríamos lo suficiente como para llegar a verlo, aunque alguno de nuestros descendientes podría estar disfrutando de esa invención dentro de un buen tiempo.

Aun siendo así  cuando llegue el momento seguro ese avance científico sera una de las mas significativas revoluciones experimentadas por la humanidad y la sociedad. 

Esta entrada participa en la XXXIX Edición del Carnaval de la Física, que esta siendo organizado en esta ocasión por el blog El zombi de Schrödinger. ]

Referencias |

El protón es mas pequeño de lo que pensábamos

No es nada fácil medir el radio de un protón, porque los quarks que lo componen no dejan de interaccionar. Aun así, la comunidad científica ha fijado unos valores con los datos de complicados métodos de medición, pero los resultados difieren si se usan otras técnicas. Un equipo europeo ya apuntó hace unos años que el protón es más pequeño de lo establecido y ahora lo vuelve a confirmar con un nuevo estudio que publica Science.

El electrón es una partícula como un punto, cuyo tamaño se ha medido en menos de 10-20 m, pero el protón, por el contrario, es una partícula compuesta de otras más pequeñas y fundamentales: los quarks”, recuerda Aldo Antognini, del Instituto Max Planck de Óptica Cuántica (Garching, Alemania).

“Los quarks –dos up y un down por cada protón– se mueven e interactúan de forma muy dinámica entre ellos y el torbellino que forman es el que da lugar al tamaño del protón”, explica el investigador.

Antognini y otros colegas europeos y de EE UU presentan esta semana en Science un estudio que señala que el protón es más pequeño de lo que se cree. Los resultados  confirman lo que el mismo equipo ya publicó en Nature en 2010: “El protón parece ser 0,00000000000003 milímetros menor de lo que pensaban los investigadores”.

En concreto, el denominado Committee on Data for Science and Technology (CODATA) establece un radio de carga para el protón de entre 0,87 y 0,88 femtómetros (1 femtómetro son 10-15 m), mientras que los nuevos resultados lo reducen a 0,84 femtómetros. El radio de carga eléctrica es la extensión media de la ‘nube’ que generan los quarks –que están cargados– al moverse.

Las diferencias parecen insignificantes, pero puede tener repercusiones físicas “serias”, según los expertos, ya que sugieren que quizá  haya un vacío en las teorías actuales de la mecánica cuántica. Además, los protones, junto a los neutrones, forman el núcleo atómico de cada átomo que existe en el universo.

El estudio también determina por primera vez el radio magnético del protón –0,87  femtómetros–. Este otro radio es la media de la distribución magnética dentro del protón, que viene dada por los momentos magnéticos de los quarks y las corrientes que producen al moverse.

Para llevar a cabo esta investigación, el equipo ha empleado la espectroscopia láser del hidrógeno muónico. El hidrógeno es el elemento más simple que existe, con un protón y un electrón, aunque en el experimento se sustituye este último por un muón –con carga negativa como el electrón pero con una masa 200 veces superior–.

De esta forma se puede medir mejor el protón, analizando determinadas transiciones que se producen en los estados de este hidrógeno ‘exótico’. Antognini ha adelantado a SINC que su grupo tiene previsto investigar también con átomos de helio muónico.

Por su parte, los valores establecidos por CODATA se basan en otras técnicas: espectroscópica del átomo de hidrogeno –el normal, no muónico– y cálculos de electrodinámica cuántica (QED, por sus siglas en inglés) para analizar la dispersión de carga entre el protón y el electrón.

Algunos investigadores consideran que la interpretación de los resultados de cada método de medición puede estar detrás de las discrepancias. En cualquier caso, los científicos siguen debatiendo cuál de todas estas técnicas es la mejor para encajar las piezas del denominado ‘puzle del radio del protón”.

El objetivo final, descubrir el tamaño exacto de esta partícula esencial en el funcionamiento del cosmos.

Los átomos en los que un electrón está reemplazado por un muón (electrón muónico) se conocen como átomos muónicos. El muón es parecido al electrón en que tiene su misma carga negativa pero con una masa 200 veces superior.

Con un protón y un electrón se construye el átomo más ligero que existe, el hidrógeno  Si se sustituye el electrón del átomo de hidrógeno por un muón se obtiene el hidrógeno muónico. Qué importancia tiene esta sustitución?. Pues sirve para obtener las dimensiones del protón y en consecuencia las dimensiones de todo el cosmos.

El protón puede considerarse como el ladrillo fundamental de la construcción de todo el universo. Pero muchas de sus propiedades, su tamaño y su momento magnético anómalo no están muy bien comprendidas. Para determinar el tamaño del protón, se considera como si todo su carga estuviera concentrada en una esfera de radio rp. Y para medir este radio se ha utilizado la interacción del electrón con el protón. Hasta hace poco las medidas más precisas sobre el radio del protón están dadas por la compilación de las constantes físicas CODATA. Se basan en la aplicación de las medidas espectroscópicas del átomo de hidrógeno junto con los cálculos de la electrodinámica cuántica (QED) del estado fundamental del hidrógeno  El valor es 0,8768(69)·10-15 m que indicamos por 0,8768(69) fm, donde fm indica fentometros, una abreviación para 10-15 m.

En 1913 Niels Bohr presentó una teoría del átomo de hidrógeno partiendo de un principio clásico pero introduciendo la característica de que el momento cinético esta cuantificado, esto quiere decir que es igual a h/2π, donde h es la constante de Planck.

Partiendo de la mecánica Newtoniana, el electrón gira en torno del protón con una velocidad v y se encuentra sometido a la fuerza de atracción eléctrica, esto determina el tamaño del átomo de hidrógeno.

La condición cuántica sobre el momento cinético indica lo siguiente

Juntando las dos ecuaciones obtenemos el radio del átomo de hidrógeno RH

A partir de aquí Bohr fue capaz de explicar el espectro del átomo de hidrógeno. La teoría coincidía plenamente con la experiencia. La condición cuántica era extraña en la física clásica pero daba resultados. Hay que decir que esta teoría planetaria de los átomos no se debe aceptar, está muy equivocada. El hecho de que de buenos resultados en el átomo de hidrogeno es una casualidad. Esta casualidad hizo posible que Bohr se animara a continuar por este camino cuántico e impulsara a los demás a crear una teoría cuántica de los átomos.

El desarrollo de la física avanzó rápidamente a partir de estos descubrimientos hasta llegar a dos teorías matemáticas de la física cuántica: la mecánica matricial de  Werner Heisenberg en 1925 y la mecánica ondulatoria de Erwin Schrödinger en 1926. Poco más tarde el propio Schrödinger demostró que tanto la visión matricial como la ondulatoria eran una misma teoría pero vestidas con matemáticas diferentes.

Pues bien, volvamos al radio del átomo de hidrógeno  comprobaremos que es inversamente proporcional a la masa del electrón. Esta es la clave para estudiar al protón y aquí es donde entra en juego el muón (µ) que es 206 veces más masivo que el electrón. A partir de los datos de CODATA:

Si en lugar de observar el espectro del átomo de hidrógeno (protón + electrón) podemos observar el espectro del hidrógeno muónico (protón + muón), el radio del hidrógeno muónico será unas 206 veces menor y por tanto la interacción muón-protón será mucho mayor y más precisa. La longitud de onda también es inversamente proporcional a la masa y por tanto la longitud de onda del muón es 206 veces más pequeña que la del electrón.

Esto significa que la función de onda del muón se superpone con la del protón (206)3 » 10veces más que la del electrón en el átomo de hidrógeno  Así pues, el muón en el hidrógeno muónico se encuentra 206 veces más cerca del protón y además las medidas son mucho más precisas que con el electrón, por tanto se pueden obtener mejores resultados sobre el tamaño del protón. Las siguientes imágenes intentan ilustrar este parágrafo.

Átomo de hidrógeno

Hidrógeno muonico

Este experimento lo realizo un grupo de 32 científicos presididos por Randolf Pohl en el Instituto de Óptica Cuántica Max Plank. La idea es medir el salto energético entre dos niveles cuánticos, los cálculos dan:

El primer término de la ecuación es debido a la polarización del vacío, el segundo y tercer término son las contribuciones al tamaño finito del protón.

Utilizando un láser pulsante, el equipo mesuro los niveles de energía del hidrógeno muónico y los resultados experimentales dan el siguiente resultado:

Sustituyendo en los cálculos se obtiene el siguiente valor para el radio del protón rp = 0.84184 (36) fm. Así pues, parece que el protón es 0.00000000000003 milímetros más pequeño, cerca de un 4% menor que los últimos experimentos. La diferencia es infinitesimal, pero los protones son las partículas más comunes y junto a los neutrones forman el núcleo atómico de cada átomo del universo. Parece como un pequeño punto de carga positiva. Pero en sus entrañas es mucho más complejo, cada protón está formado por partículas fundamentales denominadas quarks.

Les explico a continuación como el protón puede considerarse el ladrillo fundamental de la construcción cósmica. No hay duda que la fuerza principal del Universo es la fuerza gravitatoria, podemos ponerla en relación con la otra fuerza fundamental, la electromagnética.

Para realizar la comprobación utilizamos dos protones. La fuerza de atracción gravitatoria entre dos protones es 10-36 veces menor que la fuerza eléctrica de repulsión. Por eso en física atómica se ignoran los efectos gravitatorios. Pero la fuerza de gravedad siempre tiene el mismo signo negativo, es  de atracción. En cambio la fuerza eléctrica puede ser de atracción y repulsión, dependiendo de los signos de las cargas, positiva o negativa.

En un cuerpo macroscópico las fuerzas de atracción y repulsión eléctricas pueden cancelarse y quedara solamente la fuerza de atracción gravitatoria, que puede llegar a ser muy importante para cuerpos masivos. Es el caso de los planetas, estrellas y cúmulos globulares.

La energía gravitacional de una partícula orbitando un objeto de masa M a una distancia r depende de M/r. Si tenemos N átomos juntos formando una esfera, la masa M de esta esfera hipotética será proporcional a N y por tanto la energía será proporcional a N/r. Puesto que es una esfera el radio será proporcional a N1/3, recuerden que el volumen de una esfera es proporcional al cubo de su radio y el volumen es proporcional a N.

Entonces la energía es proporcional a N/N1/3 = N2/3 . A medida que la cantidad de átomos aumenta, la fuerza de la gravedad va aumentando. Por cada 1000 átomos la energía gravitatoria aumenta un factor 100. Así pues, tenemos que la cantidad de átomos N será proporcional a la energía gravitatoria

Cuando N sea mayor que

la fuerza de la gravedad será dominante. Este simple argumento nos da una idea de porque las estrellas son tan masivas. Un objeto que contiene más de 1054 átomos de hidrógeno o protones (esto es 2·1027 kg) se comprimirá por el efecto de la fuerza de atracción gravitatoria, hasta que se enciende la fusión termonuclear en su centro y esta energía compensa el colapso gravitacional. Por ejemplo, Júpiter tiene una masa de 1,899·1027 kg, por poco no se convierte en una estrella.

Pero si la cantidad de protones es superior a 1057 no hay ninguna fuerza que pueda compensar el colapso gravitatorio y se forma un agujero negro.

Estas y otras relaciones numéricas se muestran en el siguiente diagrama. En vertical la masa de un objeto respecto la masa del protón y en horizontal el radio del objeto respecto el radio del protón en escala logarítmica.

La colaboración internacional
Este proyecto es el fruto del esfuerzo de colaboración entre científicos de 32 instituciones diferentes en los distintos países.Algunas de las contribuciones más importantes incluyen:
– El Laboratorio Kastler Brossel (ENS París / UPMC / CNRS) de Francia.
– El Instituto Max-Planck de Óptica Cuántica en Alemania.
– El Instituto Paul Scherrer (PSI), el Instituto de Física de Partículas del Instituto Federal de Tecnología de Zurich y el Departamento de Física de la Universidad de Friburgo en Suiza.
– El Departamento de Física de la Universidad de Coimbra y Aveiro en Portugal,
– El Instituto für Strahlwerkzeuge y Dausinger y Giesen GmbH en Stuttgart, Alemania.

 INFORMACIÓN ADICIONAL: http://www.nature.com/news/shrunken-proton-baffles-scientists-1.12289

¿Qué son los Diagramas de Feynman?

Me imagino que muchos de los estudiantes de Física y de otras ciencias de primer año han visto en alguna parte un diagrama como el siguiente el cual ha despertado en ellos una expectación latente por conocer la manera de entenderlos y comprenderlos. Así que si tu eres uno de esos estudiantes de ciencia o tan solo un amante de la ciencia entonces puedo decirte que haz llegado al lugar adecuado.

Esta entrada ha sido creada a petición de FranNavarro que en twitter lo pueden encontrar como @Cucfran, espero que esta entrada aclare todas sus dudas.

Richard Feynman fue uno de los más importantes físicos del siglo XX. Su trabajo en electrodinámica cuántica le valió el Premio Nobel de Física en 1965, compartido con Julian Schwinger y Sin-Ichiro Tomonaga. En este trabajo desarrolló un método para estudiar las interacciones y propiedades de las partículas subatómicas utilizando los denominados diagramas de Feynman.
Si en alguna noticia o artículo de difusión nos hemos topado alguna vez con la mención a esos diagramas y lo buscamos en el internet, terminaremos con una idea básica: diagramas de partículas. Y seguramente, el resto de la información que podamos encontrar sobre ellos nos parecerá muy extraña y difícil de entender, debido a que se encuentra plagada de términos muy técnicos que solo personas que trabajan diariamente con ellas pueden entender.

Y para los no instruidos en la materia a veces se nos complica demasiado poder entenderlos, así que aquí les va una simple y sencilla explicación.

Pensemos en las reglas de un juego en el que:

  • Podemos dibujar dos tipos de líneas: una línea recta con una flecha o una onda.

  • Las podemos dibujar en cualquier dirección. Sólo debemos conectar estas líneas si tenemos dos líneas con flechas encontrándose con una línea ondulada.

La orientación de las flechas es importante. Una flecha debe apuntar al vértice y la otra hacia el otro lado.

  • Los diagramas sólo deben contener piezas conectadas. Cada línea debe conectar con un vértice. No debe haber ninguna parte del diagrama desconectada.

  • Las líneas rectas deben ser rectas y las onduladas, eso, una onda.

Si este es el juego de los diagramas de Feynman, listo, esas son las reglas. Este juego se puede llamar QED (siglas en inglés para electrodinámica cuántica). 


Ahora podemos tratar de dibujar algún diagrama. Pero, cuidado, no podemos hacer cosas así:

Luego de hacer varios diagramas podríamos tratar de encontrar patrones:

¿Hay relación entre el número de líneas externas y el número de líneas internas y vértices?
Si sabemos el número de líneas externas con flechas apuntando hacia adentro, ¿podemos deducir el número de líneas externas con flechas que apuntan hacia afuera?
¿Es posible hacer diagramas que contengan bucles? ¿Eso cambia las respuestas anteriores?

¿Qué significa todo esto?

Cada línea recta es una partícula. Los vértices son interacciones. Las reglas antes mencionadas son una idea general de una teoría de partículas y sus interacciones. Se la llama QED, Electrodinámica cuántica. Las líneas con flechas son partículas de materia (fermiones). Las líneas onduladas es una partícula de fuerza (bosones) que, en este caso, intermedia la interacción electromagnética: es el fotón.

Los diagramas cuentan una historia acerca de cómo un conjunto de partículas interactúan. Se leen los diagramas de izquierda a derecha y esto es importante porque las partículas con flechas que apuntan de izquierda a derecha son electrones. Las que apuntan hacia la otra dirección son positrones. Se puede pensar en las flechas como apuntando en la dirección del flujo de la carga eléctrica.

Hasta aquí tenemos entonces:

e+ es un positrón, e- es un electrón y la gamma es un fotón. 
De esto podemos hacer algunos comentarios:
La interacción con el fotón mostrada arriba incluye secretamente información acerca de la conservación de la carga eléctrica: para cada flecha que apunta hacia una dirección, debe haber otra hacia el otro lado.
Pero podemos rotar la interacción y contar una historia diferente.
Aquí hay algunos ejemplos de distintas maneras de interpretar una interacción (leyendo de izquierda a derecha):

Esto se interpreta así:

(1) un electrón emite un fotón y continúa
(2) un positrón absorbe un fotón y continúa
(3) un electrón y un positrón se aniquilan en un fotón
(4) un fotón espontáneamente produce un par de electrón y positrón

En el lado izquierdo de un diagrama tenemos las “partículas entrantes”, que son las que colisionarán entre sí para producir algo. Por ejemplo, en el LHC esas “partículas entrantes” son los quarks y gluones que viven dentro de los aceleradores de protones. 
En el lado derecho de un diagrama tenemos las “partículas salientes”, que son las detectadas luego de una interesante interacción.

Para la teoría brevemente conceptuada arriba, podemos imaginar un colisionador de electrones y positrones como el viejo LEP y SLAC. En esos experimentos un electrón y un positrón colisionan y las partículas resultantes son detectadas. En nuestra simplificada teoría QED, ¿qué clase de “señales experimentales” (configuraciones de partículas salientes) podrían medirse?
Por ejemplo: ¿es posible tener una señal de un solo electrón con dos positrones? ¿Existen restricciones sobre cuántos fotones salen?

Las líneas externas corresponden a partículas que entran o que salen.
¿Y las líneas internas? Representan partículas virtuales que no son directamente observadas. Son creadas cuánticamente y desaparecen de la misma forma, sirviendo sólo a que un conjunto de interacciones ocurran para que las partículas entrantes se conviertan en partículas salientes. 
Aquí tenemos un ejemplo de un fotón virtual mediando la interacción entre un electrón y un positrón.

En el primer diagrama, el electrón y el positrón se aniquilan en un fotón que luego produce otro par electrón-positrón.
En el segundo diagrama, un electrón empuja a un fotón hacia un positrón cercano (sin siquiera tocarlo). Esto se entiende con la idea de que las partículas de fuerza son extraños objetos cuánticos que median las fuerzas. Sin embargo, nuestra teoría trata a las partículas de fuerza y materia igual. Podemos dibujar diagramas donde hay fotones en el estado externo y los electrones son virtuales:

Este es un proceso donde la luz (el fotón) y un electrón se empujan uno a otro y se llama dispersión Compton. Notar, de paso, que no me molesté en inclinar la partícula virtual vertical en el segundo diagrama. Esto es porque no importa si lo interpretamos como un electrón virtual o un positrón virtual: podemos decir que (1) el electrón emite un fotón y luego se dispersa del fotón o (2) que el fotón entrante produjo un par con la resultante aniquilación positrón-electrón para formar un fotón saliente:

Esta es la idea básica de los diagramas de Feynman. Nos permiten escribir qué interacciones son posibles. 

The Big Bang Theory y los diagramas de Feynman

Y para todos los seguidores de The Big Bang Theory seguramente recuerdan la imagen siguiente…

Corría el año 2008, era la primera temporada de TBBT, el treceavo episodio: The Bat Jar Conjecture, AA perdía 1150 puntos contra PMS con 1175, el Dr. Gablehauser hacía la última pregunta, y yo ponía una cara similar a la de Sheldon.

Estupor en los rostros de todos. Wolowitz lo resume muy bien: “Parece como algo encontrado en la nave espacial de Roswell”. Sheldon declina dar una respuesta oficial al problema, por ello pierde el Torneo de Física.

Y ahora ya saben porque la expresión de Sheldon.

Preguntas Frecuentes

¿Cuál es el significado de los ejes x e y?
Estos son realmente diagramas de espacio tiempo que conceptualizan la “trayectoria” de partículas. Al leer estos diagramas de izquierda a derecha, interpretamos el eje x como tiempo. Podemos pensar cada franja vertical como un momento en el tiempo. El eje y es la dirección del espacio.

¿Así que las partículas viajan en líneas rectas?
No, pero es fácil cree erróneamente eso si tomas a los diagramas demasiado en serio. El camino que las partículas toman a través del espacio es determinado no sólo por las interacciones (capturadas por los diagramas de Feynman), sino la cinemática (que no es captada por los diagramas). Por ejemplo, uno debería imponer cosas como momento y conservación de la energía. El punto de los diagramas es entender las interacciones a lo largo del camino de las partículas, no la real trayectoria de la partícula en el espacio.

¿Esto significa que los positrones son sólo electrones viajando hacia atrás en el tiempo?
En los tempranos días de la electrodinámica cuántica, eso parecía ser una idea que la gente gustaba decir de vez en cuando porque sonaba atractiva. Desde el punto de vista de los diagramas (y en algún sentido también en forma matemática) uno podría tomar esa interpretación, pero no ganamos nada. Entre otras razones más técnicas, ese punto de vista es más bien contraproducente porque el marco matemático de la teoría de campo cuántica está construida sobre la idea de causalidad.

¿Qué significa que un conjunto de partículas entrantes y partículas salientes pueden tener múltiples diagramas?
En los ejemplos de arriba de dispersiones dos a dos mostré dos diagramas diferentes que toman el estado de entrada y producen el requerido estado de salida. De hecho, hay infinitos de esos diagramas. Desde la mecánica cuántica uno debe sumar todas las formas para tener del estado de entrada el estado de salida.

¿Cuál es el significado de las reglas 3 y 4?
La regla 3 dice que sólo nos vamos a ocupar acerca de una cadena particular de interacciones. No nos importa acerca de partículas adicionales que no interaccionan o cadenas independientes de interacciones. La regla 4 hace que los diagramas sean fáciles de leer. Ocasionalmente deberemos dibujar líneas curvas o incluso líneas que pasan por debajo de otras.

¿De dónde vienen estas reglas?
Las reglas que dimos arriba (llamadas reglas de Feynman) son esencialmente la definición de una teoría de física de partículas. Más completamente, las reglas deben también incluir unos números asociados con los parámetros de la teoría (por ej.: las masas de las partículas).
Los estudiantes de graduado en física de partículas pasan gran parte de su primer año aprendiendo cómo extraer las reglas diagramáticas de expresiones matemáticas (y luego cómo usar los diagramas para hacer más matemática), pero el contenido físico de la teoría es más intuitivamente entendido al mirar los diagramas directamente e ignorando la matemática. Si tienes verdadera curiosidad, las expresiones de las cuales se obtienen las reglas lucen parecidas a esto [es un pdf], aunque es deliberadamente una formulación “terrorífica”.

Si tienen preguntas, las pueden hacer libremente y también cualquier sugerencia o corrección sera muy bien recibida.

Saludos.

¿Por qué parece que llueve más al conducir?

Esta entrada ha sido creada a sugerencia de uno de mis amigos… Siendo el titulo de esta entrada la pregunta exacta formulada por él.

¿Porque parece que llueve más al conducir?

Primero que nada eso de que llueve mas al manejar es cierto y falso a la vez. La intensidad de la lluvia es constante, es decir que lloviendo lo mismo, en cuanto se pongan a conducir, en el asiento del conductor siempre parece que llueve mas.!!

Es geometría básica: el área de un paralelogramo es base por altura, independientemente de lo deformado que este. En la imagen, las dos superficies de contorno azul tiene N área A=b*h, ya que la única diferencia entre ambas residen en la posición del triangulo sombreado.

 

Volviendo a lo de la lluvia, el incremento de lluvia cuando conducimos se debe a que el coche se mueve y al moverse, el parabrisas recibe mucha mas agua, al avanzar, impactan mas gotas en el parabrisas, o mejor dicho, el parabrisas atrapa mas gotitas.

 ¿Pero cuantas gotitas mas?

Vamos a hacer un par de dibujitos se calculara fácil y rápido. Fijaos en el triangulo naranja que he dibujado sobre el parabrisas. El lado mas largo (hipotenusa) representa el parabrisas, el lado A es la proyección horizontal y el lado B es la proyección vertical.

 

Todas las gotitas que entran en el triangulo por A o por B acabaran mojando el parabrisas… Como el coche avanza, todo lo que atraviese A o B mojara el parabrisas.

Las gotitas que mojan parabrisas = gotitas que atraviesan A + gotitas que atraviesan B.

Os podría parecer que eso de pasar de tener un problema (las gotitas que mojan parabrisas) a tener que calcular 2 problemas (gotitas que atraviesan A y gotitas que atraviesan B) es complicarse la vida, pero en realidad es romper un problema difícil en 2 problemas mas fáciles. Calcular directamente es difícil, pero sacar las gotitas A y gotitas B. es relativamente fácil.

Como A es horizontal y las gotitas caen verticalmente, las gotitas que entran en A durante un tiempo “t” son las contenidas en el cuadrado de la imagen, dibujadas en negro.

En t segundos, entrarían todas las gotitas que están a una distancia (velocidad de caída lluvia)*t

Dicho de otra manera, en t segundos, la gotita de la esquina superior tiene tiempo de caer hasta atravesar A.

La gracia de considerar solo la superficie A es que, aunque el coche se mueva, la cantidad de gotitas que entran será la misma.

Si el coche se moviera hacia la derecha, cazaria otras gotitas, pero las ultimas gotitas en entrar también estarían a una algura (velocidad de caída lluvia)*t, como ves en la segunda imagen.

La cantidad seria un paralelogramo con base A y altura V*T, y como hemos visto, el área es la misma, la lluvia que entra en A es independientemente de la velocidad del coche!!

Se podría decir que la sección B es toda la diferencia…!!

Como vimos en la primera imagen, cuando el coche no se mueve, no hay gotitas que atraviesen B. A velocidad de coche 0, la lluvia que moja es la que atraviesa A. Y que pasa cuando el coche se mueve?? Que caza mas gotitas!!!

En un tiempo t, la superficie B habrá barrido un área al avanzar, y es entonces cuando las gotitas la atraviesan. Como las gotitas van cayendo, al cabo de t segundos habrá atrapado gotitas contenidas en el paralelogramo de la imagen. Imagina una cota cayendo a cámara lenta y B avanzando. Hay una gota un metro delante de B que va descendiendo y ¡Zas! Es cazada al vuelo por B, como una mosca cazada por un matamoscas.

Ahora que ya sabemos cuantas gotas atraviesan A y cuantas B. Si quisiéramos sacar un numero necesitaríamos saber el ancho del coche, la densidad de gotitas por metro cubico y otras cosas. Pero esos ya son detalles…

Creo que básicamente eso es lo que deben saber del fenómeno del porque llueve mas cuando vas conduciendo un coche…

El cronómetro más preciso del mundo muy cerca

Las colisiones de iones pesados producidas en el CERN deberían poder generar los pulsos de luz más cortos que se hayan creado. Así se desprende de los resultados obtenidos mediante simulaciones por ordenador en la Universidad Tecnológica de Viena, en Austria. Esos pulsos son tan cortos que las tecnologías actuales no pueden medirlos. Ahora, se ha propuesto un método para crear el cronómetro más preciso del mundo para los pulsos de luz más cortos del mundo.

Los fenómenos que se producen a escalas de tiempo muy pequeñas frecuentemente se investigan mediante pulsos de láser ultracortos. Hoy en día, se pueden crear pulsos que duran algunos attosegundos. Un attosegundo es una trillonésima de segundo, ó 0,000000000000000001 segundos.

Sin embargo, esa capacidad pronto resultará insuficiente. Los núcleos atómicos en aceleradores de partículas como el LHC en el CERN pueden crear pulsos de luz un millón de veces más cortos.

En el experimento ALICE en el CERN, núcleos de plomo colisionan casi a la velocidad de la luz. Los restos de los núcleos desperdigados junto con nuevas partículas creadas por la energía del impacto forman un plasma de quarks-gluones, un estado de la materia que es tan caliente que incluso los protones y neutrones se disgregan. Sus elementos constituyentes (quarks y gluones) pueden moverse independientemente, sin estar enlazados unos a otros. Este plasma de quarks-gluones sólo existe durante varios yoctosegundos. Un yoctosegundo es una millonésima de attosegundo.

El plasma de quarks-gluones creado en un acelerador de partículas puede emitir pulsos de luz que contienen información valiosa sobre el plasma. Sin embargo, las técnicas convencionales de medición son demasiado lentas para estos fogonazos ultracortos.

A fin de solucionar el problema, el equipo de Andreas Ipp de la Universidad Tecnológica de Viena ha recurrido al efecto de Hanbury Brown y Twiss, una estrategia que se ideó originalmente para mediciones astronómicas. El nombre del efecto deriva de los de Hanbury Brown (1916-2002) y Richard Quentin Twiss (1920-2005).

En un experimento basado en el efecto de Hanbury Brown y Twiss, se estudian las correlaciones entre dos detectores de luz diferentes. De ese modo, se puede calcular con mucha precisión el diámetro de una estrella. Aparte de para estudiar distancias espaciales, el efecto también puede ser utilizado para medir intervalos de tiempo, tal como recalca Andreas Ipp. Los cálculos que él hizo junto a Peter Somkuti muestran que los pulsos del orden de los yoctosegundos emitidos por el plasma de quarks-gluones pueden ser determinados por un experimento basado en el citado efecto. Este experimento no requeriría costosos detectores adicionales, ya que podría hacerse con un detector que ya está previsto que entre en servicio a finales de esta década en el CERN.

De esa manera, el experimento ALICE podría convertirse en el cronómetro más preciso del mundo.

INFORMACION ADICIONAL: http://www.tuwien.ac.at/en/news/news_detail/article/7842/

La mascota preferida de Schrödinger

De seguro ya escuchaste sobre el gato de Schrödinger en alguna parte, y si no es así te cuento la historia:

Érase una vez un físico alemán llamado Schrödinger. El señor Schrödinger era amante de la física cuántica y de los gatos y, por aquel entonces, andaba muy atareado tratando de explicar ciertos fenómenos cuánticos bastante peculiares. Decidió coger al gato y encerrarlo en una caja en la que, además del minino, había una partícula radioactiva y cierta dosis de veneno. La partícula tenía la probabilidad del 50% de desintegrarse durante una hora y si la partícula se desintegraba, una pequeña dosis de veneno caía en el plato de comida del gato y el felino moría. Si no había desintegración, el gato lograba salir sano y salvo de aquella caja de los horrores.

El señor Schrödinger empezó a realizar el experimento y, pasada una hora, se planteó la siguiente pregunta: ¿Está vivo o está muerto el gato? La respuesta a esa pregunta, según la teoría cuántica, es que el gato, mientras no hay ningún observador que le esté mirando, se halla suspendido en un estado de vida-y-muerte simultáneas y únicamente cuando el observador se decide a mirar lo que le sucede al gato, el gato colapsa en un estado de vida o en un estado de muerte, saliendo así de ese estado de indeterminación.

La mecánica cuántica (o mecánica ondulatoria) es una de las principales ramas de la física que intenta explicar el comportamiento de la materia. Su campo de aplicación es, básicamente, el mundo de lo más pequeño, y sus predicciones divergen radicalmente de la llamada física clásica, por lo que suelen desafiar el sentido común. Una de golpes más duros que proporciona la mecánica cuántica a nuestra concepción “clásica” del mundo se debe a la dualidad onda-partícula.

Resumiendo bastante, y pidiendo perdón a mis colegas físicos por ello, podemos explicar esta dualidad diciendo que los científicos notaron, hace ya unos cien años, que bajo ciertas condiciones experimentales los electrones y demás partículas mostraban un comportamiento ondulatorio. Esto explicaba los resultados de muchos experimentos, como la interferencia. Pero bajo otras condiciones, las mismas partículas se comportaban como si fuesen corpúsculos, como en la dispersión de partículas. Esta dualidad, demostrada experimentalmente hasta el hartazgo, hizo necesaria una revisión de un buen número de supuestos. Por ejemplo, ya no era posible hablar de cosas tales como “trayectoria”. En efecto, al ser imposible determinar la posición y el momento de una partícula, es imposible sostener un concepto como el de la trayectoria, que es vital para la mecánica clásica. En la mecánica cuántica, el movimiento de una partícula queda determinado por una función matemática que asigna, a cada punto del espacio y del tiempo, una probabilidad determinada de que se halle tal o cual posición. A partir de esa función (la “función de ondas”) pueden extraerse todas las magnitudes del movimiento necesarias.

Afortunadamente, a nivel macroscópico estos efectos son absolutamente irrelevantes. Por ejemplo, si bien una partícula tiene una probabilidad mensurable (y a veces bastante elevada) de atravesar una barrera a pesar de no tener la energía suficiente para ello, es absolutamente improbable (pero no imposible, al menos matemáticamente) de que una persona atraviese una pared sólida. Esto se debe a que la persona (y también la pared) está formada por una colección enorme de partículas, cada una de ellas con una pequeña probabilidad de atravesar el muro. La probabilidad de que la persona termine del otro lado de la pared es básicamente el producto entre todas las probabilidades individuales. Al tratarse de un producto de un número enorme de términos (y todos menores a “1”) la probabilidad de ver efectos cuánticos en objetos macroscópicos es -por decirlo de alguna forma- muy pequeña.

Esta superposición de estados es una consecuencia de la naturaleza ondulatoria de la materia y su aplicación a sistemas macroscópicos -como un gato- es lo que nos lleva a paradoja propuesta por Schrödinger. De hecho, la sola idea de la existencia de un “gato medio vivo” es un atentado contra el sentido común. A lo largo de su vida Erwin Schrödinger fue interrogado tantas veces sobre este experimento mental, que casi podemos entender cómo se sentía cuando dijo “cada vez que escucho hablar de ese gato, empiezo a sacar mi pistola”. 

Y asi es como el gato de Schrödinger se volvió el gato mas famoso de todos…


La famosa dualidad onda-partícula 

En los primeros años del siglo XX se produjo una revolución extraordinaria en la física con el nacimiento de la mecánica cuántica, pero también se abrió un campo plagado de grandes interrogantes que nos mantienen intrigados a muchos físicos.

Uno de los descubrimientos más sorprendentes fue que la luz, además de ser una onda, también se comportaba como una partícula. Pero más sorprendente aún fue la generalización que se le ocurrió al físico francés Louis-Victor de Broglie, en 1924: si la luz es una onda y una partícula a la vez, ¿podría ser que las partículas que conocemos en realidad también son ondas? De esta manera los electrones, los protones, los átomos, incluso las moléculas, además de ser partículas -o “compuestos” de partículas- también serían ondas. Estamos ante la famosa dualidad onda-partícula. 

Esta extraña hipótesis planteaba muchas contradicciones, pues, según la creencia de la época, una partícula y una onda eran cosas opuestas. Una onda se caracterizaba por no tener masa y extenderse por el espacio, mientras que una partícula ocupa un lugar en el espacio y tiene masa. Sin embargo, varios experimentos demostraron que de Broglie tenía razón y la naturaleza no era tan simple, obligando a los científicos a rehacer el concepto de onda y partícula. 

La doble rendija 

Uno de los experimentos más interesantes es el experimento de la doble rendija, que no sólo muestra que muchas partículas pequeñas también se comportan como ondas, sino que nos permite entender y profundizar sobre el significado de la dualidad onda-partícula. 

El experimento es realmente simple: se hace pasar algo, ya sea luz, electrones, protones, incluso moléculas, a través de dos rendijas paralelas y se hace que colisione contra una placa detectora que registra este choque (por ejemplo, una película fotográfica para el caso de la luz). Pueden ocurrir dos cosas:

1 – Si aquello que pasa por las rendijas se comporta como una onda, al llegar a las dos rendijas la onda se dividirá en dos, una por cada rendija. La onda que surja de una de las rendijas interferirá con la que surja de la otra rendija y cuando llegue al detector éste detectará el resultado de esta interferencia: una serie de franjas -ver siguiente imagen- que nos permitirá inferir que lo que ha pasado a través de la rendija es precisamente una onda.

2 – Si lo que pasa por las rendijas se comporta como una partícula, lo que se verá en el detector será la marca de las dos rendijas, pues las partículas que pasen a través de éstas impactarán en línea recta contra el detector.

Hasta aquí todo parece parece sencillo. 
Ahora bien, ¿qué fue lo que ocurrió cuando se lanzó un haz de partículas a través de las dos rendijas? 

Probemos con electrones:

Una de las primeras partículas con las que se hizo el experimento fue con electrones, que, como sabemos, son partículas con carga eléctrica y muy poca masa. El resultado de enviar un haz de estas partículas hacia las dos rendijas fue, ¡un patrón de interferencia! Al principio los científicos pensaron que al lanzar muchos electrones los que pasaban a través de una de las rendijas interferían con las que pasaban por la otra y esto era lo que provocaba el patrón de onda. Así que, para evitar esto, decidieron hacerlos pasar uno a uno. 

El resultado los debió dejar boquiabiertos. Si lanzabas unos pocos electrones a través de las dos rendijas, se observaban unos cuantos puntos en el detector, que representaban los impactos de éstos (imagen a). Sin embargo, a medida que pasaba más tiempo y dejaban que más electrones impactaban el detector, los impactos de cada uno de ellos iba formando una imagen que los científicos conocían muy bien: el patrón característico de una onda.

La única manera de explicar lo sucedido es que el electrón, a medida que viaja y pasa a través de las rendijas, interfiere consigo mismo comportándose como una onda. Pero cuando llega al detector deja de comportarse como una onda y lo hace como una partícula, incidiendo y dejando una marca sólo en un punto del detector.

Posteriormente se repitió el experimento con partículas más grandes, con átomos e incluso moléculas, y el resultado ha sido el mismo: una serie de impactos puntuales, los cuales, tras un número suficientemente grande de éstos, forman un patrón de onda. 

La materia al descubierto 

El experimento de la doble rendija nos muestra cómo es realmente la materia: a medida que el electrón o la molécula viaja pasando a través de las dos rendijas, se comporta como una onda, que llega a interferir consigo mismo. Pero en el momento en el que llega al detector, se produce un solo impacto; una sola interacción en un punto: la onda desaparece y el electrón se comporta como una partícula. 

Queda así desnudada la materia al nivel más elemental: mientras no interaccione será una onda, denominada onda de probabilidad, cuyo movimiento viene descrito por la ecuación de Schrödinger y nos dice en qué regiones del espacio es probable encontrar a la partícula en el momento en que interaccione.

Pero en el momento de la interacción dicha onda desaparece instantáneamente, la probabilidad deja de existir y se materializa un evento, en nuestro caso un impacto en el detector. Es el llamado colapso de la onda de probabilidad. 

Por tanto, el concepto de partícula ya no es una “pelota” que viaja de forma compacta por el espacio hasta que choca con otra. En realidad lo que entendemos como una partícula es en realidad una onda que viaja por el espacio, y que, en el momento en el que interacciona, desaparece instantáneamente y esta onda es sustituida por un evento en un punto del espacio (evento entendido como una transferencia de energía, es decir, un choque, un cambio en el movimiento de dos partículas, etc).

La partícula de Dios

El año pasado se llevo a cabo uno de los descubrimientos mas importantes de los últimos tiempos, quizás del siglo. El “descubrimiento” de la llamada partícula de Dios, el Bosón de Higgs. Para el mundo de la Física es un descubrimiento sorprendente y muy importante, inclusive muchos colegas han llegado a decir que es tan admirable como la Teoría de la Relatividad General de Albert Einstein.

Pero para muchas personas que no se dedican al mundo de la ciencia o que aun no tienen un conocimiento avanzado de la física se les hace confuso poder dar una definición exacta de lo que es el bosón de Higgs  de lo que todos si están seguros es que tiene relación con la gravedad, pero nada mas.

He aquí una explicación bastante simple y que sin necesidad de formulas físicas o matemáticas podremos entender perfectamente que es el bosón de Higgs:

Que es la partícula de Dios…??

Como todos sabemos los átomos tienen dos partes, el núcleo y los electrones que orbitan a su alrededor. Los núcleos a su vez están formador por protones y neutrones y estos últimos están compuestos de unas partículas mas pequeñas llamadas quarks.

El Atomo

La materia que nos rodea esta formada por unas partículas que los físicos llaman fundamentales. entre ellas están los electrones y los quarks. Los electrones tienen otras partículas hermanas que comparten sus propiedades y que son mas pesadas, el muón y el tau. Ademas tenemos los primos del electrón, el muón y el tau, los llamados neutrinos. Los quarks forman partículas como los protones y los neutrones y otras mas exóticas.

Esto a grandes rasgos es lo que se conoce como el contenido de partículas del:

Modelo Estándar.

E40394B8F

B8CB84FBB

Los físicos se encontraron con el problema de descubrir como se comportan las partículas fundamentales y tuvieron que diseñar una teoría para explicar ello. A esta teoría es a la que se le conoce como el Modelo Estándar de la física de partículas.

El ME (Modelo Estándar) nos dice que las interacciones entre las partículas elementales se llevan a cabo por el intercambio de otras partículas. el nombre genérico de estas ultimas es Bosones Mensajeros.

BDB56D997

En una muy retorcida comparación podríamos imaginar como si fueran niños que se intercambian figurillas de acción para hacer amigos…. los Bosones (los mensajeros) y las partículas elementales serian los niños que interactúan cambiando figurillas. mas o menos, esto es lo que explica la teoría cuántica de campos.

En la naturaleza tenemos cuatro interacciones, que son la forma en la que tienen las particulas de relacionarse entre ellas:

  • El electromagnetismo: que se da entre cargas eléctricas.
  • La Interacción Débil: que puede cambiar el tipo de partícula (ejemplo: un quark d en un quark u, etc.)
  • La Interacción Fuerte: nos explica como se mantienen unidos los quarks entre si.

Como dije anteriormente son cuatro las interacciones, la que nos hace falta es la Gravedad, la que nos mantiene unidos al suelo y la que hace que los planetas orbiten alrededor del Sol. Pero resulta que el Modelo Estándar solo nos habla de las interacciones entre partículas que no son la gravedad. Algún día alguien tendrá que explicar ese detalle.

Bueno, el caso es que según el Modelo Estándar estas interacciones se llevan a cabo cuando dos partículas que interactúan intercambian los mensajeros apropiados.

  • En el caso del electromagnetismo dos cargas eléctricas intercambian fotones.
  • En la interacción débil pueden intercambiar mensajeros llamados W o Z.
  • Y en la interacción fuerte los quarks intercambian mensajeros a los que hemos llamado gluones. 

En un ejemplo mas fácil de entender, podemos imaginar que hay 2 niños y cada uno de ellos tiene en su frente una etiqueta con el signo menos (-). Ellos representaran cargas negativas y se lanzaran entre ellos una pelota amarilla que va a representar a un fotón.

-Que crees que pasara en ese caso con cargas del mismo signo…??

+Claramente se van a repeler entre si…!!

En el caso de los niños (ambos con carga negativa) seria como pedirles que se pasen la pelota (el fotón) cada vez mas fuerte y alto. Entonces ellos tendrían que alejarse cada vez mas para alcanzarla… se estarían repeliendo…!!!

61E41C0B2

Ahora supongamos que le cambio la etiqueta a uno de los niños y le pongo una con el signo mas (+) o una carga positiva. En este caso seria como pedirles que se pasen la pelota (el fotón) cada vez mas despacio y mas bajo. Para poder alcanzarla tendrían que acercarse cada vez mas entre si. Se estarían atrayendo…!!!

0C89AA6E7

El fotón es una partícula de luz y siempre va a la misma velocidad, la velocidad de la luz, pero tiene una cosa que puede variar que es su energía y su momento. Pero la idea de las interacciones funciona básicamente igual.

Ahora que ya tienes una idea clara de las interacciones entre partículas ahora vamos a hablar del Bosón de Higgs…!!!

Los físicos se dieron cuenta hace tiempo que según el Modelo todas las partículas se moverían a la velocidad de la luz siempre. Si eso fuera así implicaría que las partículas no se podrían frenar hasta tenerlas en reposo frente a nosotros, que no podríamos medir su masa y que por tanto la masa en reposo de estas partículas seria 0.

Lo que significa que no pesaríamos nada…!! (El sueño de muchas mujeres, pero eso no viene al caso).

Eso es imposible como lo podemos comprobar fácilmente en la comodidad de nuestro hogar. Algunos físicos entre ellos el profesor Peter Higgs junto con otros, propusieron que en el Modelo faltaba un ingrediente.

Este ingrediente es el campo de Higgs. Podemos pensar en el campo de Higgs como una multitud de partículas,  las partículas de Higgs, que cuando interaccionan con otras partículas el efecto final que tiene es que les da masa…!!!

Pero como es que le da masa a las otras partículas el Higgs…??

Supongamos que conseguimos un sombrero mexicano de esos bien grandes y lo pongo en el suelo. Imaginemos que el punto que esta justo debajo del pico del sombrero mexicano nos dice que el valor del campo de Higgs es 0. Es decir, que no tenemos partículas de Higgs por ningún sitio.

Conforme nos alejamos del centro en cualquier dirección el valor del Higgs aumenta, aparecen partículas de Higgs, y lo hace igual en todas las direcciones. Digamos que es una situación simétrica.

El sombrero representa la energía que tiene el Higgs para cada uno de sus valores. Curiosamente cuando el campo de Higgs es 0 el valor de su energía es alto. Esto es muy curioso. Se espera que cuando no tiene algo de ese algo no tenga energía  el Higgs no se comporta así.

Supongamos que una canica (bolita de vidrio) representa todo el campo de Higgs. Si la ponemos en el pico del sombrero significa que el campo vale 0, no hay partículas  pero su energía es mas alta que si la pusiéramos en cualquier otro punto del sombrero.

Ahora si bien, la suelto desde el punto mas alto del sombrero, inevitablemente caerá…!!

Cuando la canica del Higgs esta en el pico del sombrero puede caer hacia cualquiera de los lados, todo lo ve simétrico, pero cuando cae, la simetría desaparece, ha elegido una posición en el ala del sombrero que es lo mismo que decir que el campo ha dejado de ser cero y pasa a tener un valor, aparecen las partículas de Higgs.

Campo de Higgs.

Los físicos demostraron que al pasar esto, al romperse la simetría, aparecería una partícula.  Esta es la partícula de Higgs y que tendría una masa distinta de cero. Resulta que esta partícula es capaz de interactuar con el resto de partículas  pero lo hace de una forma que cuando ve un fotón lo ignora y por eso el fotón se mueve a la velocidad de la luz.

Por eso dicen que el fotón no tiene masa en reposo. 

Pero cuando la partícula del Higgs se encuentra con un mensajero W, o un Z, o un quark, o un electrón interacciona con ellos teniendo el efecto de que estas partículas adquieren una masa no nula, o que es diferente de cero.

Desgraciadamente la teoría no dice exactamente que masa tendría la partícula aunque nos dice entre que valores podría estar. Por eso es que se construyo el LHC o Gran Colisionador de Hadrones.

Es un centro de Investigación construido cerca de Ginebra, en la frontera franco-suiza. En sus 27 kilómetros de recorrido es donde se hacen chocar protones que van muy rápido.  En estas colisiones se producen partículas que a su vez se desintegran en otras partículas.  Los físicos esperaban desde hace años que en algunas de estas colisiones se encontrara el Higgs.

lhc-sim (1)

Y como saber si la partícula producida es el Higgs u otra cosa…??!!

Cuando se produce el Higgs este se desintegra en otras partículas. 

Los físicos aprendieron que una partícula de Higgs se podía desintegrar en dos fotones, en dos mensajeros Z y de otras formas.

Aprendieron a calcular con que probabilidad se desintegraría cada una de estas formas. Lo que hacen es producirse muchas colisiones en el LHC y ver cuantas veces se producen dos fotones, o dos Z, etc.

Luego comprueban si esto esta de acuerdo en lo que sabemos que tiene que producir un Higgs.

1258760196926cerndn

¿Debería importarnos el descubrimiento del bosón de Higgs?

Sin esta partícula y su campo, nada en el universo tendría masa, solo partículas sin masa moviéndose a la velocidad de la luz. El Modelo Estándar explica el 4% de toda la materia y energía del universo, aquellas que forman el universo visible, pero no dice nada sobre la materia oscura, que representa el 24% del cosmos.

Es lo que ocurre cuando uno llega a mitad de la fiesta, se encuentra con que todo el mundo está saltando y riendo, celebrándolo a lo grande, y uno se queda al margen preguntándose: ¿por qué estarán tan contentos?

Lo mismo ha ocurrido entre los físicos y el resto de la humanidad desde el 4 de julio del 2012, cuando la Organización Europea de Investigación Nuclear (CERN) anunció el descubrimiento de una nueva partícula (aun falta bastantes cosas que aclarar y confirmar) que están un 99.99999999% seguros que es el bosón de Higgs. Pero aun queda ese 0.000000001% de que no lo sea.

Pero la lógica dicta que es seguro hablar de que la nueva partícula descubierta es el Bosón de Higgs.

6a00d8341bfb1653ef0176161df6b3970c-550wi

Que el Modelo Estándar sea una teoría correcta no significa que sea completa. De hecho, no lo es. Explica el 4% de toda la materia y energía del universo, aquellas que forman el universo visible. Pero no dice nada sobre la materia oscura, que representa el 24% del cosmos y que guía los movimientos de las galaxias. Y tampoco sobre la energía oscura, que tiene un efecto opuesto a la gravedad, que está acelerando la expansión del universo y que representa el 72% restante.

Los físicos esperan que, a medida que el Higgs revele sus secretos en los próximos años, permita ir más allá del Modelo Estándar y adentrarse en este universo oscuro. “El bosón de Higgs abre una puerta, pero aún no sabemos qué hay detrás”

El descubrimiento del Higgs culmina con éxito una de las aventuras de exploración más largas y ambiciosas de la historia de la ciencia. Ha sido medio siglo de búsqueda para comprender los engranajes que mueven el universo. 

Llegar al Higgs ha sido como llegar por primera vez al polo sur, a la cumbre del Everest o a la Luna. El Higgs “es un canto a la capacidad de la mente humana de descubrir los secretos de la naturaleza. Cambiará nuestra visión sobre nosotros mismos y nuestro lugar en el universo. Sin duda esto es lo que distingue a la gran música, a la gran literatura, al gran arte… y a la gran ciencia”.

Sin bosón y campo de Higgs, por lo tanto, nada en el universo tendría masa. Si hubiera algo, serían partículas sin masa moviéndose a la velocidad de la luz. No habría, por lo tanto, ni estrellas, ni átomos, ni nosotros los físicos preguntándose sobre el bosón de Higgs. 

Curiosamente, ni el bosón ni el campo de Higgs existían en la primera fracción de segundo después del Big Bang. Nacieron poco después por alguna irregularidad cósmica aún no aclarada, De no ser por aquella irregularidad, nada de lo que hace que el universo sea un lugar interesante -para nosotros por lo menos- se hubiera creado.

El descubrimiento del Higgs da sentido a lo que, de otro modo, sería incomprensible. Aunque de todos modos nos queda mucho por descubrir y aprender de este vasto, complejo, enigmático y bello Universo.

Higgs