Archivo del sitio

Como se esta enfriando el Universo desde el Big Bang

Haciendo uso de la CSIRO Australia Telescope Array compacto cerca de Narrabri, Nueva Gales del Sur, un equipo internacional de Suecia, Francia, Alemania y Australia han medido cuán caliente estaba el Universo cuando tenía la mitad de su edad actual.

Esta es la medida más precisa que jamás se ha hecho de cómo el Universo se ha enfriado durante su historia de 13,77 mil millones de años.  Dado que la luz tarda en viajar, cuando miramos hacia el espacio lo que vemos es el universo como lo fue en el pasado, como lo fue cuando la luz dejó las galaxias que estamos viendo. Así que para mirar hacia atrás a mitad de camino en la historia del universo, tenemos que mirar a mitad de camino en todo el Universo.

¿Cómo podemos medir la temperatura a una distancia tan grande?

Los astrónomos estudiaron gas en una galaxia sin nombre  que se encuentra a 7200 millones de años luz de distancia [posee un corrimiento al rojo de 0,89].

Lo único que mantiene este gas caliente es la radiación cósmica de fondo, el brillo remanente del Big Bang. Por suerte, hay otra galaxia poderosa, un quásar (llamado PKS 1830-211), que está detrás de la galaxia sin nombre. Las ondas de radio de este quásar tienen que pasar a través del gas de la galaxia en primer plano. Al hacerlo, las moléculas de gas absorben algo de la energía de las ondas de radio. Esto deja un distintivo de “huella digital” en las ondas de radio.

De esta “huella digital” es de donde los astrónomos calcularon la temperatura del gas. Encontraron que era 5,08 grados Kelvin (-267,92 grados Celsius), muy frío, pero aún más caliente que el Universo actual, que está en 2,73 grados Kelvin (-270,27 grados Celsius).

De acuerdo con la teoría del Big Bang, la temperatura de la radiación cósmica de fondo cae suavemente a medida que el Universo se expande. Eso es lo que vemos en las mediciones. El Universo de unos pocos millones de años atrás era unos grados más caliente de lo que es ahora, exactamente como la teoría del Big Bang lo predice.

Journal Reference:

  1. S. Muller , A. Beelen, J. H. Black, S. J. Curran, C. Horellou, S. Aalto, F. Combes, M. Guelin, C. Henkel. A precise and accurate determination of the cosmic microwave background temperature at z=0.89Astronomy & Astrophysics, 2013 [link del paper original]

Anuncios

El agujero negro de mayor masa del universo

Se ha descubierto un agujero negro que sacude los cimientos de muchos modelos actuales de evolución galáctica. Este monstruo tiene 17.000 millones de veces la masa del Sol, y es, por tanto, bastante más pesado de lo predicho por los modelos. Y aún más importante: el objeto podría ser el agujero negro más masivo conocido hasta la fecha.

Los astrónomos creen que hay un agujero negro supermasivo en el centro de cada galaxia. La masa de los agujeros negros de esa clase va desde varios cientos de miles de masas solares hasta unos pocos miles de millones. El agujero negro mejor investigado tiene alrededor de cuatro millones de masas solares y se encuentra en el centro de nuestra galaxia, la Vía Láctea.

En los estudios sobre las masas de galaxias distantes y sus agujeros negros se ha comprobado una interesante correlación: Un agujero negro alcanza típicamente sólo una fracción muy concreta de la masa total de la galaxia. Aunque no se conoce muy bien el por qué de esta proporción, desempeña un papel importante en todos los modelos teóricos actuales sobre evolución de galaxias.

Ahora, durante una búsqueda sistemática que se inició en 2010, y en la que se ha trabajado con el telescopio Hobby-Eberly y las imágenes archivadas del telescopio espacial Hubble, el equipo dirigido por Remco van den Bosch, del Instituto Max Planck para la Astronomía en Alemania, ha localizado un agujero negro que incumple esta proporción.

Está en el centro de la galaxia NGC 1277, ubicada a 220 millones de años-luz, en la constelación de Perseo. NGC 1277 tiene tan sólo el 10 por ciento del tamaño y de la masa de nuestra Vía Láctea.

[Img #11313]

Con el fin de determinar la masa del agujero negro, van den Bosch y sus colegas produjeron un modelo dinámico de la galaxia que incluye todas las órbitas estelares posibles. Comparaciones sistemáticas de los datos del modelo con los de las observaciones mostraron qué combinaciones de órbitas y valores de masa del agujero negro proporcionan la mejor explicación para las observaciones.

El resultado es que el agujero negro del centro de NGC 1277 debe tener alrededor de 17.000 millones de masas solares. Esto significa que el agujero podría ser el más masivo conocido. Se calcula que la masa del agujero negro que ahora ostenta el récord actual debe tener entre 6.000 y 37.000 millones de masas solares. Si el valor real está en el extremo inferior de este rango, el agujero de NGC 1277 superaría este récord.

Sin embargo, la mayor sorpresa para los astrónomos es que este agujero tan masivo esté en una galaxia bastante pequeña. A juzgar por el tamaño de ésta, el agujero negro debería ser mucho menos masivo, si tenemos en cuenta la citada proporción típica entre masa de una galaxia y masa de su agujero negro central.

Es que acaso los científicos se han equivocado, o es algo que escapa de los precedentes históricos de la astronomía y la astrofisica…

MAYOR INFORMACIÓN: http://www.mpg.de/6648360/black-hole-galaxy-models?filter_order=L

Medir con láseres la estructura interna de átomos sin distorsionarla

El mejor método para obtener la información más precisa sobre la estructura interna de átomos y moléculas es excitarlos por medio de una luz láser resonante. Por desgracia, esta luz láser, cuando supera cierta intensidad, puede dar lugar a modificaciones significativas dentro de la envoltura de electrones del átomo, de modo que el mero acto de hacer una medición puede introducir una distorsión en la misma.

Ahora, científicos de la Universidad Técnica Estatal de Rusia y Novosibirsk, el Instituto de Física Láser de Novosibirsk y la Universidad Estatal de Novosibirsk, todas estas instituciones en Rusia, así como el Instituto Nacional de Metrología en Alemania (PTB), han demostrado experimentalmente cómo evitar tal distorsión ejercida por la luz láser.

Esa distorsión se produce cuando la intensa luz láser modifica la posición de los niveles de energía atómicos. El desplazamiento depende de la intensidad y la longitud de onda del láser utilizado. Si el propósito de una observación es determinar las propiedades del átomo como un objeto cuántico no perturbado, este desplazamiento debe prevenirse o corregirse. Con el nuevo procedimiento, que se ha aplicado experimentalmente por primera vez en el PTB, una secuencia de pulsos láser cuidadosamente seleccionada para excitar al átomo elimina la citada distorsión.

La idea básica de la utilización de la radiación pulsante para efectuar mediciones de muy alta precisión se remonta a Norman Ramsey, quien fue galardonado con un Premio Nobel de Física en 1989 por este descubrimiento.

El nuevo método basado en una versión avanzada del concepto introducido por Ramsey puede también ser el primer paso hacia un notable aumento de precisión en algunos relojes atómicos, así como ser de utilidad para numerosas aplicaciones en las que resulte fundamental lograr una interacción precisa y controlada entre los átomos y la luz láser.

INFORMACIÓN ADICIONAL: http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2012/pitext/pi121122.html