Archivo del sitio

La Teletransportación: ¿Realidad o ficción?

¿Quien no ha llegado tarde alguna vez a una cita importante?, puedo asegurar que usted amable lector al igual que yo hemos asistido tarde al colegio, la universidad, el trabajo, etc., etc., etc., y muchos etcéteras mas, el ritmo de vida que todos llevamos en esta sociedad nos ha obligado a “movernos rápido”, todos tenemos muchas cosas que hacer durante el día (que cada vez nos parece mas corto) y para poder cumplir con todo lo que debemos, siempre nos encontramos viajando de un lugar a otro lo mas rápido posible, para ello recurrimos a varios medios de transporte como lo son: las bicicletas, automóviles, motocicletas, autobuses, trenes, barcos y aviones.

Pero la mente humana se ha encargado de abrir nuevas vías,  que sean mucho mas rápidas y de ser posibles instantáneas para que de esa manera tengamos un poco mas de tiempo para cumplir con nuestro trajín diario. Y es en ese instante que aparece en escena la Teletransportación. 

¿Pero qué tal si pudiésemos reemplazar ese “movernos rápido” por un “movernos instantáneamente”?

ORIGEN DEL TERMINO 

Literalmente Teletransportación quiere decir: “desplazar a distancia”. Lo cual nosotros entendemos como un desplazamiento que se produce sin necesidad de establecer contacto físico directamente con el objeto para que este se mueva. 

El termino “Teletransportación”, fue acuñado en el año 1930 por un reconocido investigador y escritor de la época, un tal Charles Fort de origen estadounidense, quien se dedicaba al estudio de los hechos que la ciencia de la época no podía solucionar.

Fort utilizo esa palabra para describir una supuesta conexión entre unas misteriosas desapariciones y apariciones que sucedían en varias partes del mundo. 

TELETRANSPORTACIÓN Y CIENCIA FICCIÓN

Si se descubriera la forma de transportar al instante a una persona o un objeto de un lugar a otro, seria sin lugar a duda una tecnología que cambiara el curso de toda nuestra civilización. Aunque todos los medios de transporte (las industrias que sirven y en las que se basan dichos sistemas) que actualmente son utilizados serian completamente obsoletos.

Imagínese un día normal, la alarma de su smartphone no funciono, se despierta tarde, se levanta y se viste lo mas rápido que puede, apenas si se acomoda el cabello (si es que lo tiene), engulle a toda prisa una rebana de pan tostado y bebe un sorbo de su taza de café, pero espere… usted no tiene que conducir al trabajo, simplemente se sienta en su sillón y presiona un botón e instantáneamente se encontrara sentado en la silla de su oficina, frente al ordenador listo para empezar a trabajar. 

Seria algo increíble y muy cómodo que la vida real fuese de esa manera, pero es una pena que simplemente sea parte de una renombrada cinta del genero favorito de los Frikis (me incluyo)… La gloriosa Ciencia Ficción.

Quizas la idea de teletransportación mas temprana que incursionó en la ciencia ficción es el cuento “The man without a body” que traducido es: “El hombre sin un cuerpo”  escrito por David P. Mitchell que relata la historia de un científico que logra descubrir un metro para desarmar los átomos de su gato y transmitirlos por uno de sus cables de telégrafo  pero debido a su mala suerte, cuando intenta hacerlo con su cuerpo, la batería de su telégrafo se agota cuando solo había transmitido su cabeza, falleciendo en el intento.

Pero la sociedad en general no adopto la idea de la teletransportación hasta que la famosa serie de 1966,  Star Trek y sus películas fueron lanzadas al aire.

Y es en esa serie que se introdujo la figura de un dispositivo que hacia posible la teletransportación llamado “transportador”, teóricamente consiste en una técnica de escaneo que permite determinar la posición de las partículas del objeto, desmantelarlo y enviarla a través de un rayo a un puno definido donde se ensamblaran nuevamente.

Si nos ponemos a pensar en detalle todo lo que eso implica, llegamos a la conclusión de que el cuerpo de una persona esta compuesto por billones de billones de átomos. Y por cada uno de ellos, se debe de reproducir con absoluta exactitud su posición, el espín de cada electrón, cada una de las estructuras moleculares y ademas las formas en que todo esto interacciona entre si, como se esta moviendo, como están vibrando, todas las velocidades exactas y muchas cosas mas. 

Aunque un dato curioso es que en la serie de “Star Trek” se utilizo el concepto de la teletransportación  porque no se contaba con el presupuesto necesario como para recrear los despegues y aterrizajes de las naves en los planetas. 

Y mas recientemente, en la serie televisiva que ha causado una revolución en concepto de ciencia y comedia, “The Big Bang Theory”, en uno de sus episodios el físico teórico Sheldon Cooper define lo que es la teletransportación:

Aunque una máquina teletransportadora pudiera determinar el estado cuántico de la materia de un individuo, en realidad no estaría teletransportándolo, sino destruyéndolo en una ubicación para luego recrearlo en otra.

TELETRANSPORTACIÓN Y CIENCIA REAL

Aunque todo eso parezca una tarea prácticamente imposible de llevarse a cabo, desde el punto de vista científico, “no existiría ninguna limitación física natural por la cual no pudiese realizarse”.

Después de todo, si podemos efectuar dicho procedimiento con un único átomo (y más adelante veremos que puede hacerse y se ha hecho) no debería haber una limitante natural que nos impida hacerlo con un objeto macroscópico, como un ser humano. Lo que si existen, por lo menos en la actualidad, son limitaciones tecnológicas que nos impiden poner todo esto en práctica.

La principal limitación tecnológica que tenemos actualmente esta relacionada directamente con la capacidad de almacenamiento de información. Imaginemos que al convertir todos los átomos de nuestro cuerpo en energía  deberíamos de almacenar toda la información relativa a cada uno de estos, para poder recuperarse nuevamente en el lugar de destino. El problema directo es que el teletransporte de una sola persona generaría miles de millones de millones de terabytes de información. 

Para poder hacernos una idea mas exacta, si lográramos almacenar toda la información de una sola persona en varios discos de 1 Terabyte cada uno, necesitaríamos unos 500 millones de edificios del tamaño del Empire State para poder guardarlos.

Y como todo esto es ciencia pero sobretodo física, no podíamos dejar fuera de la fiesta al  físico mas famoso de todos los tiempos, si señores y señoras, me refiero a Don Albert Einstein…

Y a todo esto, ¿porque Einstein ?… Pues porque también podría existir una problemática tecnológica relacionada con la conversión de materia a energía. Como bien sabemos, y según fue expresado por la famosísima ecuación de Einstein “E=MC²”, la materia y la energía son la misma cosa, e incluso pueden transformarse y convertirse la una en la otra. Aunque parezca increíble, algo tan inofensivo como una galleta, podría contener tanta energía como una bomba atómica. La clave es cuán rápidamente dicha energía es liberada, lo cual en física se conoce como potencia, equivalente a energía por unidad de tiempo. Entonces, la conversión de la masa de un ser humano promedio a energía daría como resultado 40 veces la energía liberada en la más grande de las explosiones atómicas. Sin el medio tecnológico apropiado para controlar esta situación, el teletransporte podría resultar catastrófico.

Pero aparte de los problemas tecnológicos que de por si no son pocos, se le han de sumar unos no menos importantes, los problemas éticos o filosóficos.

Estos problemas filosóficos se resumen en una sola pregunta:

¿Qué es lo que se obtiene del otro lado al llevar a cabo el proceso de teletransporte?

¿Es la misma persona, o solamente una réplica cuántica perfecta? ¿Se está desarmando a la persona y armándola en otro lado; o acaso se la está desarmando, almacenando la información y luego creándola de cero nuevamente usando dicha información? ¿El teletransporte estaría matando al individuo y luego creando una copia exacta del mismo; o de alguna forma lo preserva y luego lo transporta a otro lado? Mientras se mantengan sin contestar, todas estas preguntas plantearían profundas cuestiones éticas y filosóficas muy relevantes.

LA MECÁNICA CUÁNTICA

Seguramente todos nosotros hemos oído hablar o hemos leído acerca de la  mecánica cuántica. Esta rama de la física, que representa un gigantesco avance con respecto a la física clásica newtoniana, plantea muchas situaciones sumamente exóticas y en extremo extrañas, algunas de las cuales incluso se contradicen radicalmente con nuestra lógica y sentido común. 

Uno de los principios fundamentales de la mecánica cuántica es lo que se conoce como la dualidad onda-partícula, la cual desbarató completamente nuestra forma previa de observar el mundo atómico. Previo al desarrollo de la mecánica cuántica, los físicos solían considerar al átomo como una unidad compuesta por un núcleo (que estaba formado por protones y neutrones) y una serie de electrones girando en torno a dicho núcleo en órbitas establecidas. Con el desarrollo de la mecánica cuántica, los físicos descubrieron que dichas “órbitas establecidas” no existían; en cambio, los electrones actuaban como ondas y hacían saltos cuánticos en sus movimientos aparentemente caóticos dentro de los átomos.

Otra de las exóticas propiedades de la mecánica cuántica es lo que se ha dado en conocer como el principio de incertidumbre de Heisenberg. Según este principio, no se puede conocer a la vez la velocidad y la posición exacta de un electrón, ni se puede conocer su energía exacta medida en un intervalo de tiempo dado. Sumado a la dualidad onda-partícula, este nos impide conocer la posición exacta de los electrones que orbitan al núcleo; solo podemos encontrar diferentes intensidades de onda y hablar de la probabilidad de encontrar un electrón concreto en cualquier lugar y cualquier instante de la misma.

Si tomamos en consideración la dualidad onda-partícula y el principio de incertidumbre, la mecánica cuántica nos dice entonces que en el nivel cuántico se violan todas las leyes básicas de sentido común: los electrones pueden desaparecer y reaparecer en otro lugar diferente, y también pueden estar en muchos lugares al mismo tiempo. De esta forma, los electrones podrían experimentar a nivel cuántico algo muy similar al proceso de teletransporte.

Mientras que para los electrones resulta sumamente sencillo, incluso natural, desaparecer en un lado y reaparecer en otro, trasladado a escalas macroscópicas la posibilidad de que esto mismo suceda es increíblemente remota. Aunque dicha posibilidad existe y está permitida por las leyes físicas, habría que esperar un tiempo muchísimo mayor que la edad del Universo para que ocurriera. Además, en un cuerpo humano formado por billones y billones de átomos, incluso si los electrones están danzando y saltando en su viaje alrededor del núcleo, hay tantos de ellos que sus movimientos se promedian. De hecho, a grandes rasgos, esta es la razón por la cual en nuestro nivel las sustancias parecen sólidas y permanentes.

Si bien todos estos fenómenos son sumamente interesantes y nos permiten pensar que las leyes naturales del Universo no prohíben el teletransporte, lejos se encuentran de las formas de teletransporte que nos serían útiles. Pero no nos desilusionemos y busquemos que otras opciones podemos tomar en cuenta…

EL ENTRELAZAMIENTO CUÁNTICO

Traten de imaginarse un fenómeno tan exótico y raro, que inclusive el propio Einstein tuvo que recurrir a la palabra “fantasmal” para describir a grandes rasgos su funcionamiento. El fenómeno al que me refiero se conoce como entrelazamiento cuántico, y es una de las propiedades más extrañas de la mecánica cuántica. Tan extraña es que solamente algunos pocos “elegidos” consiguen comprender realmente las muy complejas y extensas matemáticas detrás de dicha propiedad.

Explicado de forma sencilla, el entrelazamiento cuántico funciona así:  En primer lugar se deben tomar dos electrones (o cualquier partícula subatómica que les guste) en estado de coherencia, es decir, que cuenten con las mismas propiedades y vibren al unísono. Luego, aunque dichos electrones sean separados por inmensas distancias, incluso distancias tan grandes que la luz no consiga viajar de un electrón al otro, estos permanecerán en sincronización ondulatoria, y cualquier modificación que se realice sobre las propiedades de uno de los electrones, se reflejará instantáneamente en el otro electrón remoto.

Inclusive si las partículas se encuentran separadas por años luz de distancia, seguirá existiendo una onda invisible que las conecta, como si hubiese algún tipo de conexión profunda que las vincula, como si tuviesen conciencia o un alma propia. El mismo Einstein solía denominar a este fenómeno, de forma burlona, como una “fantasmal acción a distancia”.

En la década de 1980, un equipo científico de Francia probó experimentalmente este fenómeno utilizando dos detectores separados por 13 metros de distancia y midiendo los espines de fotones emitidos por átomos de calcio. Increíblemente, los resultados concordaron por completo con la teoría cuántica: aún estando separados, cuando se modificaban las propiedades de uno de los fotones, dicha modificación se reflejaba instantáneamente en el otro fotón, como si algo desconocido los mantuviese unidos y comunicase esa información entre ellos.

En el año 1993, científicos de IBM demostraron que era físicamente posible teletransportar objetos, al menos a nivel atómico, usando el entrelazamiento cuántico. En realidad lo que se transporta no es el objeto en sí, sino toda la información contenida dentro del mismo. Desde entonces los físicos han conseguido teletransportar fotones e incluso átomos enteros utilizando las propiedades del entrelazamiento cuántico, en lo que se ha dado a conocer como “teletransporte cuántico”.

Con la utilización de este método se han logrado increíbles avances recientes en relación con el teletransporte. En el año 2004 físicos de la Universidad de Viena teletransportaron partículas de luz a una distancia de 600 metros. En el mismo año, se consiguió el teletransporte cuántico no de fotones de luz, sino de átomos reales (puntualmente tres átomos de berilio), lo cual nos acerca a un dispositivo de teletransporte más realista y útil. En el año 2006 se logró otro avance espectacular: el primer teletransporte de un objeto macroscópico. Un equipo de físicos consiguió entrelazar un haz luminoso con un gas de átomos de cesio, el cual involucraba billones y billones de átomos. Luego codificaron la información contenida dentro de pulsos de láser y fueron capaces de teletransportar esa información a los átomos de cesio a una distancia de casi medio metro.

En el año 2012, investigadores europeos batieron el récord hasta entonces vigente pues lograron teletransportar fotones a una distancia de 143 kilómetros. Así que podemos decir que cada vez estamos mas cerca…

TELETRANSPORTE Y EL CONDENSADO DE BOSE-EINSTEIN

Debido a que lograr un estado de entrelazamiento cuántico entre objetos plantea inmensas dificultades, los físicos comenzaron a explorar otras posibilidades para el teletransporte de objetos sin la necesidad de recurrir al entrelazamiento. En el año 2007, finalmente se consiguió desarrollar un nuevo esquema de teletransporte, basado en un nuevo estado de la materia denominado “condensado de Bose-Einstein” (o BEC).

En la naturaleza se puede encontrar la temperatura más fría en el espacio exterior, la cual corresponde a 3°K por encima del cero absoluto (esto se debe al calor residual del Big Bang que aún llena el Universo). En cambio,un BEC se encuentra a una millonésima de mil millonésima de grado sobre el cero absoluto, lo más que podemos acercarnos a este último. Cuando un objeto se enfría hasta alcanzar casi el cero absoluto, todos sus átomos se ponen en el estado de energía más baja, de modo que comienzan a vibrar al unísono y se hacen coherentes entre sí.

El nuevo dispositivo de teletransporte funcionaría entonces de la siguiente manera. Se toma un conjunto de átomos de rubidio super-fríos en un estado BEC. Entonces se aplica al BEC un haz de materia, también compuesto por átomos de rubidio. Estos últimos átomos también“quieren ponerse” en el estado de energía más baja, así que ceden su exceso de energía en forma de un pulso de luz. Este haz de luz, que contiene toda la información cuántica de la materia original, se envía a través de un cable de fibra óptica. Por último, el haz de luz incide sobre otro BEC, que transforma el haz de luz en el haz de materia original.

Este nuevo método de teletransporte es sumamente prometedor, puesto que se evita el muy complicado entrelazamiento de átomos. De cualquier modo, las cosas no son tan sencillas como parecerían: este método también tiene sus problemáticas, principalmente por depender de las propiedades de los BEC, que son muy difíciles de recrear en el laboratorio.

QUE PODEMOS ESPERAR

Como nos hemos dado cuenta, la teletransportación esta un poco lejos de hacerse realidad debido a que aun tenemos problemas técnicos muy difíciles de superar, pero al paso en el que la tecnología esta evolucionando si podemos asegurar que llegara el día en el que teletransportarse sea tan común y ordinario como leer la ultima notificación de nuestra red social favorita. Quizas solo necesitemos de unos cuantos siglos o quizás de un tiempo mucho mayor.

Falta aun mucho por descubrir, mucho por hacer y demasiado por discutir.

Sabemos que actualmente se requieren los laboratorios y el instrumental más avanzado del mundo para teletransportar tan solo algunos átomos. Los físicos confían que en las próximas décadas se pueda realizar el teletransporte de objetos más complejos, como moléculas o incluso algún virus. Pero nosotros no viviríamos lo suficiente como para llegar a verlo, aunque alguno de nuestros descendientes podría estar disfrutando de esa invención dentro de un buen tiempo.

Aun siendo así  cuando llegue el momento seguro ese avance científico sera una de las mas significativas revoluciones experimentadas por la humanidad y la sociedad. 

Esta entrada participa en la XXXIX Edición del Carnaval de la Física, que esta siendo organizado en esta ocasión por el blog El zombi de Schrödinger. ]

Referencias |

Anuncios

Como se esta enfriando el Universo desde el Big Bang

Haciendo uso de la CSIRO Australia Telescope Array compacto cerca de Narrabri, Nueva Gales del Sur, un equipo internacional de Suecia, Francia, Alemania y Australia han medido cuán caliente estaba el Universo cuando tenía la mitad de su edad actual.

Esta es la medida más precisa que jamás se ha hecho de cómo el Universo se ha enfriado durante su historia de 13,77 mil millones de años.  Dado que la luz tarda en viajar, cuando miramos hacia el espacio lo que vemos es el universo como lo fue en el pasado, como lo fue cuando la luz dejó las galaxias que estamos viendo. Así que para mirar hacia atrás a mitad de camino en la historia del universo, tenemos que mirar a mitad de camino en todo el Universo.

¿Cómo podemos medir la temperatura a una distancia tan grande?

Los astrónomos estudiaron gas en una galaxia sin nombre  que se encuentra a 7200 millones de años luz de distancia [posee un corrimiento al rojo de 0,89].

Lo único que mantiene este gas caliente es la radiación cósmica de fondo, el brillo remanente del Big Bang. Por suerte, hay otra galaxia poderosa, un quásar (llamado PKS 1830-211), que está detrás de la galaxia sin nombre. Las ondas de radio de este quásar tienen que pasar a través del gas de la galaxia en primer plano. Al hacerlo, las moléculas de gas absorben algo de la energía de las ondas de radio. Esto deja un distintivo de “huella digital” en las ondas de radio.

De esta “huella digital” es de donde los astrónomos calcularon la temperatura del gas. Encontraron que era 5,08 grados Kelvin (-267,92 grados Celsius), muy frío, pero aún más caliente que el Universo actual, que está en 2,73 grados Kelvin (-270,27 grados Celsius).

De acuerdo con la teoría del Big Bang, la temperatura de la radiación cósmica de fondo cae suavemente a medida que el Universo se expande. Eso es lo que vemos en las mediciones. El Universo de unos pocos millones de años atrás era unos grados más caliente de lo que es ahora, exactamente como la teoría del Big Bang lo predice.

Journal Reference:

  1. S. Muller , A. Beelen, J. H. Black, S. J. Curran, C. Horellou, S. Aalto, F. Combes, M. Guelin, C. Henkel. A precise and accurate determination of the cosmic microwave background temperature at z=0.89Astronomy & Astrophysics, 2013 [link del paper original]

El protón es mas pequeño de lo que pensábamos

No es nada fácil medir el radio de un protón, porque los quarks que lo componen no dejan de interaccionar. Aun así, la comunidad científica ha fijado unos valores con los datos de complicados métodos de medición, pero los resultados difieren si se usan otras técnicas. Un equipo europeo ya apuntó hace unos años que el protón es más pequeño de lo establecido y ahora lo vuelve a confirmar con un nuevo estudio que publica Science.

El electrón es una partícula como un punto, cuyo tamaño se ha medido en menos de 10-20 m, pero el protón, por el contrario, es una partícula compuesta de otras más pequeñas y fundamentales: los quarks”, recuerda Aldo Antognini, del Instituto Max Planck de Óptica Cuántica (Garching, Alemania).

“Los quarks –dos up y un down por cada protón– se mueven e interactúan de forma muy dinámica entre ellos y el torbellino que forman es el que da lugar al tamaño del protón”, explica el investigador.

Antognini y otros colegas europeos y de EE UU presentan esta semana en Science un estudio que señala que el protón es más pequeño de lo que se cree. Los resultados  confirman lo que el mismo equipo ya publicó en Nature en 2010: “El protón parece ser 0,00000000000003 milímetros menor de lo que pensaban los investigadores”.

En concreto, el denominado Committee on Data for Science and Technology (CODATA) establece un radio de carga para el protón de entre 0,87 y 0,88 femtómetros (1 femtómetro son 10-15 m), mientras que los nuevos resultados lo reducen a 0,84 femtómetros. El radio de carga eléctrica es la extensión media de la ‘nube’ que generan los quarks –que están cargados– al moverse.

Las diferencias parecen insignificantes, pero puede tener repercusiones físicas “serias”, según los expertos, ya que sugieren que quizá  haya un vacío en las teorías actuales de la mecánica cuántica. Además, los protones, junto a los neutrones, forman el núcleo atómico de cada átomo que existe en el universo.

El estudio también determina por primera vez el radio magnético del protón –0,87  femtómetros–. Este otro radio es la media de la distribución magnética dentro del protón, que viene dada por los momentos magnéticos de los quarks y las corrientes que producen al moverse.

Para llevar a cabo esta investigación, el equipo ha empleado la espectroscopia láser del hidrógeno muónico. El hidrógeno es el elemento más simple que existe, con un protón y un electrón, aunque en el experimento se sustituye este último por un muón –con carga negativa como el electrón pero con una masa 200 veces superior–.

De esta forma se puede medir mejor el protón, analizando determinadas transiciones que se producen en los estados de este hidrógeno ‘exótico’. Antognini ha adelantado a SINC que su grupo tiene previsto investigar también con átomos de helio muónico.

Por su parte, los valores establecidos por CODATA se basan en otras técnicas: espectroscópica del átomo de hidrogeno –el normal, no muónico– y cálculos de electrodinámica cuántica (QED, por sus siglas en inglés) para analizar la dispersión de carga entre el protón y el electrón.

Algunos investigadores consideran que la interpretación de los resultados de cada método de medición puede estar detrás de las discrepancias. En cualquier caso, los científicos siguen debatiendo cuál de todas estas técnicas es la mejor para encajar las piezas del denominado ‘puzle del radio del protón”.

El objetivo final, descubrir el tamaño exacto de esta partícula esencial en el funcionamiento del cosmos.

Los átomos en los que un electrón está reemplazado por un muón (electrón muónico) se conocen como átomos muónicos. El muón es parecido al electrón en que tiene su misma carga negativa pero con una masa 200 veces superior.

Con un protón y un electrón se construye el átomo más ligero que existe, el hidrógeno  Si se sustituye el electrón del átomo de hidrógeno por un muón se obtiene el hidrógeno muónico. Qué importancia tiene esta sustitución?. Pues sirve para obtener las dimensiones del protón y en consecuencia las dimensiones de todo el cosmos.

El protón puede considerarse como el ladrillo fundamental de la construcción de todo el universo. Pero muchas de sus propiedades, su tamaño y su momento magnético anómalo no están muy bien comprendidas. Para determinar el tamaño del protón, se considera como si todo su carga estuviera concentrada en una esfera de radio rp. Y para medir este radio se ha utilizado la interacción del electrón con el protón. Hasta hace poco las medidas más precisas sobre el radio del protón están dadas por la compilación de las constantes físicas CODATA. Se basan en la aplicación de las medidas espectroscópicas del átomo de hidrógeno junto con los cálculos de la electrodinámica cuántica (QED) del estado fundamental del hidrógeno  El valor es 0,8768(69)·10-15 m que indicamos por 0,8768(69) fm, donde fm indica fentometros, una abreviación para 10-15 m.

En 1913 Niels Bohr presentó una teoría del átomo de hidrógeno partiendo de un principio clásico pero introduciendo la característica de que el momento cinético esta cuantificado, esto quiere decir que es igual a h/2π, donde h es la constante de Planck.

Partiendo de la mecánica Newtoniana, el electrón gira en torno del protón con una velocidad v y se encuentra sometido a la fuerza de atracción eléctrica, esto determina el tamaño del átomo de hidrógeno.

La condición cuántica sobre el momento cinético indica lo siguiente

Juntando las dos ecuaciones obtenemos el radio del átomo de hidrógeno RH

A partir de aquí Bohr fue capaz de explicar el espectro del átomo de hidrógeno. La teoría coincidía plenamente con la experiencia. La condición cuántica era extraña en la física clásica pero daba resultados. Hay que decir que esta teoría planetaria de los átomos no se debe aceptar, está muy equivocada. El hecho de que de buenos resultados en el átomo de hidrogeno es una casualidad. Esta casualidad hizo posible que Bohr se animara a continuar por este camino cuántico e impulsara a los demás a crear una teoría cuántica de los átomos.

El desarrollo de la física avanzó rápidamente a partir de estos descubrimientos hasta llegar a dos teorías matemáticas de la física cuántica: la mecánica matricial de  Werner Heisenberg en 1925 y la mecánica ondulatoria de Erwin Schrödinger en 1926. Poco más tarde el propio Schrödinger demostró que tanto la visión matricial como la ondulatoria eran una misma teoría pero vestidas con matemáticas diferentes.

Pues bien, volvamos al radio del átomo de hidrógeno  comprobaremos que es inversamente proporcional a la masa del electrón. Esta es la clave para estudiar al protón y aquí es donde entra en juego el muón (µ) que es 206 veces más masivo que el electrón. A partir de los datos de CODATA:

Si en lugar de observar el espectro del átomo de hidrógeno (protón + electrón) podemos observar el espectro del hidrógeno muónico (protón + muón), el radio del hidrógeno muónico será unas 206 veces menor y por tanto la interacción muón-protón será mucho mayor y más precisa. La longitud de onda también es inversamente proporcional a la masa y por tanto la longitud de onda del muón es 206 veces más pequeña que la del electrón.

Esto significa que la función de onda del muón se superpone con la del protón (206)3 » 10veces más que la del electrón en el átomo de hidrógeno  Así pues, el muón en el hidrógeno muónico se encuentra 206 veces más cerca del protón y además las medidas son mucho más precisas que con el electrón, por tanto se pueden obtener mejores resultados sobre el tamaño del protón. Las siguientes imágenes intentan ilustrar este parágrafo.

Átomo de hidrógeno

Hidrógeno muonico

Este experimento lo realizo un grupo de 32 científicos presididos por Randolf Pohl en el Instituto de Óptica Cuántica Max Plank. La idea es medir el salto energético entre dos niveles cuánticos, los cálculos dan:

El primer término de la ecuación es debido a la polarización del vacío, el segundo y tercer término son las contribuciones al tamaño finito del protón.

Utilizando un láser pulsante, el equipo mesuro los niveles de energía del hidrógeno muónico y los resultados experimentales dan el siguiente resultado:

Sustituyendo en los cálculos se obtiene el siguiente valor para el radio del protón rp = 0.84184 (36) fm. Así pues, parece que el protón es 0.00000000000003 milímetros más pequeño, cerca de un 4% menor que los últimos experimentos. La diferencia es infinitesimal, pero los protones son las partículas más comunes y junto a los neutrones forman el núcleo atómico de cada átomo del universo. Parece como un pequeño punto de carga positiva. Pero en sus entrañas es mucho más complejo, cada protón está formado por partículas fundamentales denominadas quarks.

Les explico a continuación como el protón puede considerarse el ladrillo fundamental de la construcción cósmica. No hay duda que la fuerza principal del Universo es la fuerza gravitatoria, podemos ponerla en relación con la otra fuerza fundamental, la electromagnética.

Para realizar la comprobación utilizamos dos protones. La fuerza de atracción gravitatoria entre dos protones es 10-36 veces menor que la fuerza eléctrica de repulsión. Por eso en física atómica se ignoran los efectos gravitatorios. Pero la fuerza de gravedad siempre tiene el mismo signo negativo, es  de atracción. En cambio la fuerza eléctrica puede ser de atracción y repulsión, dependiendo de los signos de las cargas, positiva o negativa.

En un cuerpo macroscópico las fuerzas de atracción y repulsión eléctricas pueden cancelarse y quedara solamente la fuerza de atracción gravitatoria, que puede llegar a ser muy importante para cuerpos masivos. Es el caso de los planetas, estrellas y cúmulos globulares.

La energía gravitacional de una partícula orbitando un objeto de masa M a una distancia r depende de M/r. Si tenemos N átomos juntos formando una esfera, la masa M de esta esfera hipotética será proporcional a N y por tanto la energía será proporcional a N/r. Puesto que es una esfera el radio será proporcional a N1/3, recuerden que el volumen de una esfera es proporcional al cubo de su radio y el volumen es proporcional a N.

Entonces la energía es proporcional a N/N1/3 = N2/3 . A medida que la cantidad de átomos aumenta, la fuerza de la gravedad va aumentando. Por cada 1000 átomos la energía gravitatoria aumenta un factor 100. Así pues, tenemos que la cantidad de átomos N será proporcional a la energía gravitatoria

Cuando N sea mayor que

la fuerza de la gravedad será dominante. Este simple argumento nos da una idea de porque las estrellas son tan masivas. Un objeto que contiene más de 1054 átomos de hidrógeno o protones (esto es 2·1027 kg) se comprimirá por el efecto de la fuerza de atracción gravitatoria, hasta que se enciende la fusión termonuclear en su centro y esta energía compensa el colapso gravitacional. Por ejemplo, Júpiter tiene una masa de 1,899·1027 kg, por poco no se convierte en una estrella.

Pero si la cantidad de protones es superior a 1057 no hay ninguna fuerza que pueda compensar el colapso gravitatorio y se forma un agujero negro.

Estas y otras relaciones numéricas se muestran en el siguiente diagrama. En vertical la masa de un objeto respecto la masa del protón y en horizontal el radio del objeto respecto el radio del protón en escala logarítmica.

La colaboración internacional
Este proyecto es el fruto del esfuerzo de colaboración entre científicos de 32 instituciones diferentes en los distintos países.Algunas de las contribuciones más importantes incluyen:
– El Laboratorio Kastler Brossel (ENS París / UPMC / CNRS) de Francia.
– El Instituto Max-Planck de Óptica Cuántica en Alemania.
– El Instituto Paul Scherrer (PSI), el Instituto de Física de Partículas del Instituto Federal de Tecnología de Zurich y el Departamento de Física de la Universidad de Friburgo en Suiza.
– El Departamento de Física de la Universidad de Coimbra y Aveiro en Portugal,
– El Instituto für Strahlwerkzeuge y Dausinger y Giesen GmbH en Stuttgart, Alemania.

 INFORMACIÓN ADICIONAL: http://www.nature.com/news/shrunken-proton-baffles-scientists-1.12289

El cronómetro más preciso del mundo muy cerca

Las colisiones de iones pesados producidas en el CERN deberían poder generar los pulsos de luz más cortos que se hayan creado. Así se desprende de los resultados obtenidos mediante simulaciones por ordenador en la Universidad Tecnológica de Viena, en Austria. Esos pulsos son tan cortos que las tecnologías actuales no pueden medirlos. Ahora, se ha propuesto un método para crear el cronómetro más preciso del mundo para los pulsos de luz más cortos del mundo.

Los fenómenos que se producen a escalas de tiempo muy pequeñas frecuentemente se investigan mediante pulsos de láser ultracortos. Hoy en día, se pueden crear pulsos que duran algunos attosegundos. Un attosegundo es una trillonésima de segundo, ó 0,000000000000000001 segundos.

Sin embargo, esa capacidad pronto resultará insuficiente. Los núcleos atómicos en aceleradores de partículas como el LHC en el CERN pueden crear pulsos de luz un millón de veces más cortos.

En el experimento ALICE en el CERN, núcleos de plomo colisionan casi a la velocidad de la luz. Los restos de los núcleos desperdigados junto con nuevas partículas creadas por la energía del impacto forman un plasma de quarks-gluones, un estado de la materia que es tan caliente que incluso los protones y neutrones se disgregan. Sus elementos constituyentes (quarks y gluones) pueden moverse independientemente, sin estar enlazados unos a otros. Este plasma de quarks-gluones sólo existe durante varios yoctosegundos. Un yoctosegundo es una millonésima de attosegundo.

El plasma de quarks-gluones creado en un acelerador de partículas puede emitir pulsos de luz que contienen información valiosa sobre el plasma. Sin embargo, las técnicas convencionales de medición son demasiado lentas para estos fogonazos ultracortos.

A fin de solucionar el problema, el equipo de Andreas Ipp de la Universidad Tecnológica de Viena ha recurrido al efecto de Hanbury Brown y Twiss, una estrategia que se ideó originalmente para mediciones astronómicas. El nombre del efecto deriva de los de Hanbury Brown (1916-2002) y Richard Quentin Twiss (1920-2005).

En un experimento basado en el efecto de Hanbury Brown y Twiss, se estudian las correlaciones entre dos detectores de luz diferentes. De ese modo, se puede calcular con mucha precisión el diámetro de una estrella. Aparte de para estudiar distancias espaciales, el efecto también puede ser utilizado para medir intervalos de tiempo, tal como recalca Andreas Ipp. Los cálculos que él hizo junto a Peter Somkuti muestran que los pulsos del orden de los yoctosegundos emitidos por el plasma de quarks-gluones pueden ser determinados por un experimento basado en el citado efecto. Este experimento no requeriría costosos detectores adicionales, ya que podría hacerse con un detector que ya está previsto que entre en servicio a finales de esta década en el CERN.

De esa manera, el experimento ALICE podría convertirse en el cronómetro más preciso del mundo.

INFORMACION ADICIONAL: http://www.tuwien.ac.at/en/news/news_detail/article/7842/

El campo magnético terrestre colabora en la degradación de la capa de ozono

La interacción del campo magnético terrestre con sustancias químicas contaminantes podría explicar la presencia de estas sustancias en las zonas polares, donde hoy se registra el mayor deterioro de la capa de ozono, según un estudio de la Universidad Autónoma de Madrid, en España.

Año tras año la capa de ozono se reduce en las zonas polares. Como causa de este fenómeno los científicos han identificado en dichas zonas la presencia de óxidos de nitrógeno, átomos de cloro y radicales monóxido, entre otras especies químicas que participan como sustancias intermedias en reacciones en cadena de degradación de las moléculas de ozono. Se sabe que el origen de estas especies químicas se encuentra en muchos productos y combustibles utilizados especialmente en las zonas más pobladas y desarrolladas del planeta, pero hasta ahora no se ha constatado cuál es el mecanismo que las transporta hasta las zonas polares. 

Una reciente investigación —publicada en la revista Green and Sustainable Chemistry por Jaime González Velasco, Catedrático de Química Física y Electro química de la Universidad Autónoma de Madrid (UAM)— ofrece nuevos elementos para explicar la presencia en las zonas polares de las especies químicas que degradan esa capa que en la tierra funciona como filtro de las radiaciones ultravioleta.

En su trabajo, González Velasco encuentra que el motor de este mecanismo son las propias características magnéticas de las especies químicas. En concreto, resalta la distinción entre sustancias diamagnéticas y sustancias paramagnéticas. Esta distinción es la que permite entender que, en un campo magnético, unas sustancias —las paramagnéticas— sean atraídas hacia la región donde el campo es más intenso, mientras que otras —las diamagnéticas— sean atraídas hacia la región donde el campo es más débil.

 

En base a esto el autor argumenta que, en el campo magnético terrestre, las moléculas de oxígeno, al ser paramagnéticas, serían dirigidas hacia los polos, donde la intensidad del campo es máxima. Por el contrario, las moléculas de ozono, al ser diamagnéticas, serían transportadas por el campo magnético terrestre hacia zonas en las que su intensidad es mínima, es decir, hacia las zonas tropicales y ecuatoriales.

Para el investigador, el que las moléculas de oxígeno sean paramagnéticas y las de ozono diamagnéticas, podría explicar también la reducción anormal que cada año sufre la capa de ozono durante las estaciones de primavera y su consiguiente recuperación durante las estaciones de verano. De hecho, el catedrático propone un mecanismo que explica estos ciclos anuales de degradación-recuperación.

La degradación de la capa de ozono no tiene lugar en las zonas templadas de los hemisferios norte y sur de la tierra, que es donde se acumula la mayor concentración de población contaminante. Puesto que la degradación aparece en latitudes polares, los científicos han concluido que debe existir un mecanismo de transporte hacia esas latitudes que explique la presencia de los átomos de cloro, óxidos de nitrógeno y demás sustancias que actúan en la destrucción de la capa ozono.

Otro indicio importante de este mecanismo, es el hecho de que la degradación de la capa de ozono se produce en primavera, que es cuando comienzan a llegar fotones a las zonas polares, los cuales inducen los procesos fotoquímicos necesarios para que se produzca la desaparición de las moléculas de ozono.

Además, el agujero de la capa de ozono que aparece en las latitudes australes suele ser de mayor magnitud que el que se produce en las zonas boreales, pese a que es en el hemisferio norte donde se produce la mayor acumulación de actividades industriales y de tráfico de diversos tipos de vehículos responsables de la generación de óxidos de nitrógeno.

Como mecanismos de transporte de las especies degradantes se ha recurrido hasta el momento a considerar como responsables a los vientos dominantes a diversas alturas de la atmósfera, que generan corrientes capaces de llevar hasta los polos las moléculas, átomos y radicales perjudiciales.

No obstante, bajo esta teoría quedan sin explicación muchas cuestiones, como la distribución de concentraciones de óxidos de nitrógeno a diversas alturas de la atmósfera. Pero eso en un futuro muy corto lo podremos conocer…

Medir con láseres la estructura interna de átomos sin distorsionarla

El mejor método para obtener la información más precisa sobre la estructura interna de átomos y moléculas es excitarlos por medio de una luz láser resonante. Por desgracia, esta luz láser, cuando supera cierta intensidad, puede dar lugar a modificaciones significativas dentro de la envoltura de electrones del átomo, de modo que el mero acto de hacer una medición puede introducir una distorsión en la misma.

Ahora, científicos de la Universidad Técnica Estatal de Rusia y Novosibirsk, el Instituto de Física Láser de Novosibirsk y la Universidad Estatal de Novosibirsk, todas estas instituciones en Rusia, así como el Instituto Nacional de Metrología en Alemania (PTB), han demostrado experimentalmente cómo evitar tal distorsión ejercida por la luz láser.

Esa distorsión se produce cuando la intensa luz láser modifica la posición de los niveles de energía atómicos. El desplazamiento depende de la intensidad y la longitud de onda del láser utilizado. Si el propósito de una observación es determinar las propiedades del átomo como un objeto cuántico no perturbado, este desplazamiento debe prevenirse o corregirse. Con el nuevo procedimiento, que se ha aplicado experimentalmente por primera vez en el PTB, una secuencia de pulsos láser cuidadosamente seleccionada para excitar al átomo elimina la citada distorsión.

La idea básica de la utilización de la radiación pulsante para efectuar mediciones de muy alta precisión se remonta a Norman Ramsey, quien fue galardonado con un Premio Nobel de Física en 1989 por este descubrimiento.

El nuevo método basado en una versión avanzada del concepto introducido por Ramsey puede también ser el primer paso hacia un notable aumento de precisión en algunos relojes atómicos, así como ser de utilidad para numerosas aplicaciones en las que resulte fundamental lograr una interacción precisa y controlada entre los átomos y la luz láser.

INFORMACIÓN ADICIONAL: http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2012/pitext/pi121122.html

La mascota preferida de Schrödinger

De seguro ya escuchaste sobre el gato de Schrödinger en alguna parte, y si no es así te cuento la historia:

Érase una vez un físico alemán llamado Schrödinger. El señor Schrödinger era amante de la física cuántica y de los gatos y, por aquel entonces, andaba muy atareado tratando de explicar ciertos fenómenos cuánticos bastante peculiares. Decidió coger al gato y encerrarlo en una caja en la que, además del minino, había una partícula radioactiva y cierta dosis de veneno. La partícula tenía la probabilidad del 50% de desintegrarse durante una hora y si la partícula se desintegraba, una pequeña dosis de veneno caía en el plato de comida del gato y el felino moría. Si no había desintegración, el gato lograba salir sano y salvo de aquella caja de los horrores.

El señor Schrödinger empezó a realizar el experimento y, pasada una hora, se planteó la siguiente pregunta: ¿Está vivo o está muerto el gato? La respuesta a esa pregunta, según la teoría cuántica, es que el gato, mientras no hay ningún observador que le esté mirando, se halla suspendido en un estado de vida-y-muerte simultáneas y únicamente cuando el observador se decide a mirar lo que le sucede al gato, el gato colapsa en un estado de vida o en un estado de muerte, saliendo así de ese estado de indeterminación.

La mecánica cuántica (o mecánica ondulatoria) es una de las principales ramas de la física que intenta explicar el comportamiento de la materia. Su campo de aplicación es, básicamente, el mundo de lo más pequeño, y sus predicciones divergen radicalmente de la llamada física clásica, por lo que suelen desafiar el sentido común. Una de golpes más duros que proporciona la mecánica cuántica a nuestra concepción “clásica” del mundo se debe a la dualidad onda-partícula.

Resumiendo bastante, y pidiendo perdón a mis colegas físicos por ello, podemos explicar esta dualidad diciendo que los científicos notaron, hace ya unos cien años, que bajo ciertas condiciones experimentales los electrones y demás partículas mostraban un comportamiento ondulatorio. Esto explicaba los resultados de muchos experimentos, como la interferencia. Pero bajo otras condiciones, las mismas partículas se comportaban como si fuesen corpúsculos, como en la dispersión de partículas. Esta dualidad, demostrada experimentalmente hasta el hartazgo, hizo necesaria una revisión de un buen número de supuestos. Por ejemplo, ya no era posible hablar de cosas tales como “trayectoria”. En efecto, al ser imposible determinar la posición y el momento de una partícula, es imposible sostener un concepto como el de la trayectoria, que es vital para la mecánica clásica. En la mecánica cuántica, el movimiento de una partícula queda determinado por una función matemática que asigna, a cada punto del espacio y del tiempo, una probabilidad determinada de que se halle tal o cual posición. A partir de esa función (la “función de ondas”) pueden extraerse todas las magnitudes del movimiento necesarias.

Afortunadamente, a nivel macroscópico estos efectos son absolutamente irrelevantes. Por ejemplo, si bien una partícula tiene una probabilidad mensurable (y a veces bastante elevada) de atravesar una barrera a pesar de no tener la energía suficiente para ello, es absolutamente improbable (pero no imposible, al menos matemáticamente) de que una persona atraviese una pared sólida. Esto se debe a que la persona (y también la pared) está formada por una colección enorme de partículas, cada una de ellas con una pequeña probabilidad de atravesar el muro. La probabilidad de que la persona termine del otro lado de la pared es básicamente el producto entre todas las probabilidades individuales. Al tratarse de un producto de un número enorme de términos (y todos menores a “1”) la probabilidad de ver efectos cuánticos en objetos macroscópicos es -por decirlo de alguna forma- muy pequeña.

Esta superposición de estados es una consecuencia de la naturaleza ondulatoria de la materia y su aplicación a sistemas macroscópicos -como un gato- es lo que nos lleva a paradoja propuesta por Schrödinger. De hecho, la sola idea de la existencia de un “gato medio vivo” es un atentado contra el sentido común. A lo largo de su vida Erwin Schrödinger fue interrogado tantas veces sobre este experimento mental, que casi podemos entender cómo se sentía cuando dijo “cada vez que escucho hablar de ese gato, empiezo a sacar mi pistola”. 

Y asi es como el gato de Schrödinger se volvió el gato mas famoso de todos…


La famosa dualidad onda-partícula 

En los primeros años del siglo XX se produjo una revolución extraordinaria en la física con el nacimiento de la mecánica cuántica, pero también se abrió un campo plagado de grandes interrogantes que nos mantienen intrigados a muchos físicos.

Uno de los descubrimientos más sorprendentes fue que la luz, además de ser una onda, también se comportaba como una partícula. Pero más sorprendente aún fue la generalización que se le ocurrió al físico francés Louis-Victor de Broglie, en 1924: si la luz es una onda y una partícula a la vez, ¿podría ser que las partículas que conocemos en realidad también son ondas? De esta manera los electrones, los protones, los átomos, incluso las moléculas, además de ser partículas -o “compuestos” de partículas- también serían ondas. Estamos ante la famosa dualidad onda-partícula. 

Esta extraña hipótesis planteaba muchas contradicciones, pues, según la creencia de la época, una partícula y una onda eran cosas opuestas. Una onda se caracterizaba por no tener masa y extenderse por el espacio, mientras que una partícula ocupa un lugar en el espacio y tiene masa. Sin embargo, varios experimentos demostraron que de Broglie tenía razón y la naturaleza no era tan simple, obligando a los científicos a rehacer el concepto de onda y partícula. 

La doble rendija 

Uno de los experimentos más interesantes es el experimento de la doble rendija, que no sólo muestra que muchas partículas pequeñas también se comportan como ondas, sino que nos permite entender y profundizar sobre el significado de la dualidad onda-partícula. 

El experimento es realmente simple: se hace pasar algo, ya sea luz, electrones, protones, incluso moléculas, a través de dos rendijas paralelas y se hace que colisione contra una placa detectora que registra este choque (por ejemplo, una película fotográfica para el caso de la luz). Pueden ocurrir dos cosas:

1 – Si aquello que pasa por las rendijas se comporta como una onda, al llegar a las dos rendijas la onda se dividirá en dos, una por cada rendija. La onda que surja de una de las rendijas interferirá con la que surja de la otra rendija y cuando llegue al detector éste detectará el resultado de esta interferencia: una serie de franjas -ver siguiente imagen- que nos permitirá inferir que lo que ha pasado a través de la rendija es precisamente una onda.

2 – Si lo que pasa por las rendijas se comporta como una partícula, lo que se verá en el detector será la marca de las dos rendijas, pues las partículas que pasen a través de éstas impactarán en línea recta contra el detector.

Hasta aquí todo parece parece sencillo. 
Ahora bien, ¿qué fue lo que ocurrió cuando se lanzó un haz de partículas a través de las dos rendijas? 

Probemos con electrones:

Una de las primeras partículas con las que se hizo el experimento fue con electrones, que, como sabemos, son partículas con carga eléctrica y muy poca masa. El resultado de enviar un haz de estas partículas hacia las dos rendijas fue, ¡un patrón de interferencia! Al principio los científicos pensaron que al lanzar muchos electrones los que pasaban a través de una de las rendijas interferían con las que pasaban por la otra y esto era lo que provocaba el patrón de onda. Así que, para evitar esto, decidieron hacerlos pasar uno a uno. 

El resultado los debió dejar boquiabiertos. Si lanzabas unos pocos electrones a través de las dos rendijas, se observaban unos cuantos puntos en el detector, que representaban los impactos de éstos (imagen a). Sin embargo, a medida que pasaba más tiempo y dejaban que más electrones impactaban el detector, los impactos de cada uno de ellos iba formando una imagen que los científicos conocían muy bien: el patrón característico de una onda.

La única manera de explicar lo sucedido es que el electrón, a medida que viaja y pasa a través de las rendijas, interfiere consigo mismo comportándose como una onda. Pero cuando llega al detector deja de comportarse como una onda y lo hace como una partícula, incidiendo y dejando una marca sólo en un punto del detector.

Posteriormente se repitió el experimento con partículas más grandes, con átomos e incluso moléculas, y el resultado ha sido el mismo: una serie de impactos puntuales, los cuales, tras un número suficientemente grande de éstos, forman un patrón de onda. 

La materia al descubierto 

El experimento de la doble rendija nos muestra cómo es realmente la materia: a medida que el electrón o la molécula viaja pasando a través de las dos rendijas, se comporta como una onda, que llega a interferir consigo mismo. Pero en el momento en el que llega al detector, se produce un solo impacto; una sola interacción en un punto: la onda desaparece y el electrón se comporta como una partícula. 

Queda así desnudada la materia al nivel más elemental: mientras no interaccione será una onda, denominada onda de probabilidad, cuyo movimiento viene descrito por la ecuación de Schrödinger y nos dice en qué regiones del espacio es probable encontrar a la partícula en el momento en que interaccione.

Pero en el momento de la interacción dicha onda desaparece instantáneamente, la probabilidad deja de existir y se materializa un evento, en nuestro caso un impacto en el detector. Es el llamado colapso de la onda de probabilidad. 

Por tanto, el concepto de partícula ya no es una “pelota” que viaja de forma compacta por el espacio hasta que choca con otra. En realidad lo que entendemos como una partícula es en realidad una onda que viaja por el espacio, y que, en el momento en el que interacciona, desaparece instantáneamente y esta onda es sustituida por un evento en un punto del espacio (evento entendido como una transferencia de energía, es decir, un choque, un cambio en el movimiento de dos partículas, etc).

La partícula de Dios

El año pasado se llevo a cabo uno de los descubrimientos mas importantes de los últimos tiempos, quizás del siglo. El “descubrimiento” de la llamada partícula de Dios, el Bosón de Higgs. Para el mundo de la Física es un descubrimiento sorprendente y muy importante, inclusive muchos colegas han llegado a decir que es tan admirable como la Teoría de la Relatividad General de Albert Einstein.

Pero para muchas personas que no se dedican al mundo de la ciencia o que aun no tienen un conocimiento avanzado de la física se les hace confuso poder dar una definición exacta de lo que es el bosón de Higgs  de lo que todos si están seguros es que tiene relación con la gravedad, pero nada mas.

He aquí una explicación bastante simple y que sin necesidad de formulas físicas o matemáticas podremos entender perfectamente que es el bosón de Higgs:

Que es la partícula de Dios…??

Como todos sabemos los átomos tienen dos partes, el núcleo y los electrones que orbitan a su alrededor. Los núcleos a su vez están formador por protones y neutrones y estos últimos están compuestos de unas partículas mas pequeñas llamadas quarks.

El Atomo

La materia que nos rodea esta formada por unas partículas que los físicos llaman fundamentales. entre ellas están los electrones y los quarks. Los electrones tienen otras partículas hermanas que comparten sus propiedades y que son mas pesadas, el muón y el tau. Ademas tenemos los primos del electrón, el muón y el tau, los llamados neutrinos. Los quarks forman partículas como los protones y los neutrones y otras mas exóticas.

Esto a grandes rasgos es lo que se conoce como el contenido de partículas del:

Modelo Estándar.

E40394B8F

B8CB84FBB

Los físicos se encontraron con el problema de descubrir como se comportan las partículas fundamentales y tuvieron que diseñar una teoría para explicar ello. A esta teoría es a la que se le conoce como el Modelo Estándar de la física de partículas.

El ME (Modelo Estándar) nos dice que las interacciones entre las partículas elementales se llevan a cabo por el intercambio de otras partículas. el nombre genérico de estas ultimas es Bosones Mensajeros.

BDB56D997

En una muy retorcida comparación podríamos imaginar como si fueran niños que se intercambian figurillas de acción para hacer amigos…. los Bosones (los mensajeros) y las partículas elementales serian los niños que interactúan cambiando figurillas. mas o menos, esto es lo que explica la teoría cuántica de campos.

En la naturaleza tenemos cuatro interacciones, que son la forma en la que tienen las particulas de relacionarse entre ellas:

  • El electromagnetismo: que se da entre cargas eléctricas.
  • La Interacción Débil: que puede cambiar el tipo de partícula (ejemplo: un quark d en un quark u, etc.)
  • La Interacción Fuerte: nos explica como se mantienen unidos los quarks entre si.

Como dije anteriormente son cuatro las interacciones, la que nos hace falta es la Gravedad, la que nos mantiene unidos al suelo y la que hace que los planetas orbiten alrededor del Sol. Pero resulta que el Modelo Estándar solo nos habla de las interacciones entre partículas que no son la gravedad. Algún día alguien tendrá que explicar ese detalle.

Bueno, el caso es que según el Modelo Estándar estas interacciones se llevan a cabo cuando dos partículas que interactúan intercambian los mensajeros apropiados.

  • En el caso del electromagnetismo dos cargas eléctricas intercambian fotones.
  • En la interacción débil pueden intercambiar mensajeros llamados W o Z.
  • Y en la interacción fuerte los quarks intercambian mensajeros a los que hemos llamado gluones. 

En un ejemplo mas fácil de entender, podemos imaginar que hay 2 niños y cada uno de ellos tiene en su frente una etiqueta con el signo menos (-). Ellos representaran cargas negativas y se lanzaran entre ellos una pelota amarilla que va a representar a un fotón.

-Que crees que pasara en ese caso con cargas del mismo signo…??

+Claramente se van a repeler entre si…!!

En el caso de los niños (ambos con carga negativa) seria como pedirles que se pasen la pelota (el fotón) cada vez mas fuerte y alto. Entonces ellos tendrían que alejarse cada vez mas para alcanzarla… se estarían repeliendo…!!!

61E41C0B2

Ahora supongamos que le cambio la etiqueta a uno de los niños y le pongo una con el signo mas (+) o una carga positiva. En este caso seria como pedirles que se pasen la pelota (el fotón) cada vez mas despacio y mas bajo. Para poder alcanzarla tendrían que acercarse cada vez mas entre si. Se estarían atrayendo…!!!

0C89AA6E7

El fotón es una partícula de luz y siempre va a la misma velocidad, la velocidad de la luz, pero tiene una cosa que puede variar que es su energía y su momento. Pero la idea de las interacciones funciona básicamente igual.

Ahora que ya tienes una idea clara de las interacciones entre partículas ahora vamos a hablar del Bosón de Higgs…!!!

Los físicos se dieron cuenta hace tiempo que según el Modelo todas las partículas se moverían a la velocidad de la luz siempre. Si eso fuera así implicaría que las partículas no se podrían frenar hasta tenerlas en reposo frente a nosotros, que no podríamos medir su masa y que por tanto la masa en reposo de estas partículas seria 0.

Lo que significa que no pesaríamos nada…!! (El sueño de muchas mujeres, pero eso no viene al caso).

Eso es imposible como lo podemos comprobar fácilmente en la comodidad de nuestro hogar. Algunos físicos entre ellos el profesor Peter Higgs junto con otros, propusieron que en el Modelo faltaba un ingrediente.

Este ingrediente es el campo de Higgs. Podemos pensar en el campo de Higgs como una multitud de partículas,  las partículas de Higgs, que cuando interaccionan con otras partículas el efecto final que tiene es que les da masa…!!!

Pero como es que le da masa a las otras partículas el Higgs…??

Supongamos que conseguimos un sombrero mexicano de esos bien grandes y lo pongo en el suelo. Imaginemos que el punto que esta justo debajo del pico del sombrero mexicano nos dice que el valor del campo de Higgs es 0. Es decir, que no tenemos partículas de Higgs por ningún sitio.

Conforme nos alejamos del centro en cualquier dirección el valor del Higgs aumenta, aparecen partículas de Higgs, y lo hace igual en todas las direcciones. Digamos que es una situación simétrica.

El sombrero representa la energía que tiene el Higgs para cada uno de sus valores. Curiosamente cuando el campo de Higgs es 0 el valor de su energía es alto. Esto es muy curioso. Se espera que cuando no tiene algo de ese algo no tenga energía  el Higgs no se comporta así.

Supongamos que una canica (bolita de vidrio) representa todo el campo de Higgs. Si la ponemos en el pico del sombrero significa que el campo vale 0, no hay partículas  pero su energía es mas alta que si la pusiéramos en cualquier otro punto del sombrero.

Ahora si bien, la suelto desde el punto mas alto del sombrero, inevitablemente caerá…!!

Cuando la canica del Higgs esta en el pico del sombrero puede caer hacia cualquiera de los lados, todo lo ve simétrico, pero cuando cae, la simetría desaparece, ha elegido una posición en el ala del sombrero que es lo mismo que decir que el campo ha dejado de ser cero y pasa a tener un valor, aparecen las partículas de Higgs.

Campo de Higgs.

Los físicos demostraron que al pasar esto, al romperse la simetría, aparecería una partícula.  Esta es la partícula de Higgs y que tendría una masa distinta de cero. Resulta que esta partícula es capaz de interactuar con el resto de partículas  pero lo hace de una forma que cuando ve un fotón lo ignora y por eso el fotón se mueve a la velocidad de la luz.

Por eso dicen que el fotón no tiene masa en reposo. 

Pero cuando la partícula del Higgs se encuentra con un mensajero W, o un Z, o un quark, o un electrón interacciona con ellos teniendo el efecto de que estas partículas adquieren una masa no nula, o que es diferente de cero.

Desgraciadamente la teoría no dice exactamente que masa tendría la partícula aunque nos dice entre que valores podría estar. Por eso es que se construyo el LHC o Gran Colisionador de Hadrones.

Es un centro de Investigación construido cerca de Ginebra, en la frontera franco-suiza. En sus 27 kilómetros de recorrido es donde se hacen chocar protones que van muy rápido.  En estas colisiones se producen partículas que a su vez se desintegran en otras partículas.  Los físicos esperaban desde hace años que en algunas de estas colisiones se encontrara el Higgs.

lhc-sim (1)

Y como saber si la partícula producida es el Higgs u otra cosa…??!!

Cuando se produce el Higgs este se desintegra en otras partículas. 

Los físicos aprendieron que una partícula de Higgs se podía desintegrar en dos fotones, en dos mensajeros Z y de otras formas.

Aprendieron a calcular con que probabilidad se desintegraría cada una de estas formas. Lo que hacen es producirse muchas colisiones en el LHC y ver cuantas veces se producen dos fotones, o dos Z, etc.

Luego comprueban si esto esta de acuerdo en lo que sabemos que tiene que producir un Higgs.

1258760196926cerndn

¿Debería importarnos el descubrimiento del bosón de Higgs?

Sin esta partícula y su campo, nada en el universo tendría masa, solo partículas sin masa moviéndose a la velocidad de la luz. El Modelo Estándar explica el 4% de toda la materia y energía del universo, aquellas que forman el universo visible, pero no dice nada sobre la materia oscura, que representa el 24% del cosmos.

Es lo que ocurre cuando uno llega a mitad de la fiesta, se encuentra con que todo el mundo está saltando y riendo, celebrándolo a lo grande, y uno se queda al margen preguntándose: ¿por qué estarán tan contentos?

Lo mismo ha ocurrido entre los físicos y el resto de la humanidad desde el 4 de julio del 2012, cuando la Organización Europea de Investigación Nuclear (CERN) anunció el descubrimiento de una nueva partícula (aun falta bastantes cosas que aclarar y confirmar) que están un 99.99999999% seguros que es el bosón de Higgs. Pero aun queda ese 0.000000001% de que no lo sea.

Pero la lógica dicta que es seguro hablar de que la nueva partícula descubierta es el Bosón de Higgs.

6a00d8341bfb1653ef0176161df6b3970c-550wi

Que el Modelo Estándar sea una teoría correcta no significa que sea completa. De hecho, no lo es. Explica el 4% de toda la materia y energía del universo, aquellas que forman el universo visible. Pero no dice nada sobre la materia oscura, que representa el 24% del cosmos y que guía los movimientos de las galaxias. Y tampoco sobre la energía oscura, que tiene un efecto opuesto a la gravedad, que está acelerando la expansión del universo y que representa el 72% restante.

Los físicos esperan que, a medida que el Higgs revele sus secretos en los próximos años, permita ir más allá del Modelo Estándar y adentrarse en este universo oscuro. “El bosón de Higgs abre una puerta, pero aún no sabemos qué hay detrás”

El descubrimiento del Higgs culmina con éxito una de las aventuras de exploración más largas y ambiciosas de la historia de la ciencia. Ha sido medio siglo de búsqueda para comprender los engranajes que mueven el universo. 

Llegar al Higgs ha sido como llegar por primera vez al polo sur, a la cumbre del Everest o a la Luna. El Higgs “es un canto a la capacidad de la mente humana de descubrir los secretos de la naturaleza. Cambiará nuestra visión sobre nosotros mismos y nuestro lugar en el universo. Sin duda esto es lo que distingue a la gran música, a la gran literatura, al gran arte… y a la gran ciencia”.

Sin bosón y campo de Higgs, por lo tanto, nada en el universo tendría masa. Si hubiera algo, serían partículas sin masa moviéndose a la velocidad de la luz. No habría, por lo tanto, ni estrellas, ni átomos, ni nosotros los físicos preguntándose sobre el bosón de Higgs. 

Curiosamente, ni el bosón ni el campo de Higgs existían en la primera fracción de segundo después del Big Bang. Nacieron poco después por alguna irregularidad cósmica aún no aclarada, De no ser por aquella irregularidad, nada de lo que hace que el universo sea un lugar interesante -para nosotros por lo menos- se hubiera creado.

El descubrimiento del Higgs da sentido a lo que, de otro modo, sería incomprensible. Aunque de todos modos nos queda mucho por descubrir y aprender de este vasto, complejo, enigmático y bello Universo.

Higgs