Archivo del sitio

El Sistema Solar que pocos conocen

 

Quizás el titulo de este articulo sea un tanto polémico, pero no se me ocurrió ninguno mejor para llamar la atención sobre un tema importante en la Astronomía, una idea que aun en esta época es muy poco conocida pero que mentes atentas, mentes curiosas como la de usted querido lector,  ya han experimentado esa oleada de incertidumbre y ganas de descubrir la verdad que a todos, alguna vez en la vida, nos invade y no nos deja tranquilos.

La idea principal de este artículo lo podemos resumir en una pregunta:

¿De que tamaño es el Sistema Solar?

Para muchos es una respuesta fácil de responder y quizás hasta tonta, ingenua o cosas por el estilo, pero para muchos otros se nos hace un tanto difícil poder responder con precisión, mas que una cantidad expresada en metros o kilómetros, lo que en realidad queremos es hacernos una idea mental de que tan grande es nuestro Sistema Solar (algo muy difícil), no es tan simple, ¿Dónde empieza?, ¿Dónde termina?, ¿Cómo lo sabemos?… esas y muchas otras preguntas se tornan difíciles de responder si no tenemos una solida formación en Ciencias.

El Universo es enorme, absolutamente todos sin excepción lo sabemos, pero aunque posiblemente sea infinito, hoy en día los astrónomos pueden hacer cosas asombrosas con unos juguetitos llamados Telescopios. 

Telescopio Sky-Watcher

En la actualidad estos dispositivos son muy potentes y han venido a acortar las distancias estelares que antes nos parecían insalvables, son tan potentes que inclusive si yo encendiera una cerilla en la Luna usted podría localizar la llama desde la Tierra utilizando un buen Telescopio.

Los telescopios nos han proporcionado  una herramienta imprescindible y eficaz para sondear el enorme y basto Universo al que pertenecemos, nos ha permitido acercarnos a objetos celestes que están al otro lado del Cosmos, hoy en día podemos deducir el tamaño e incluso la habitabilidad potencial de los planetas.

Podemos captar briznas de radiación tan ridículamente leves con radio-telescopios que, la cuantía total de energía recogida del exterior del Sistema Solar por todos ellos juntos, desde que se inicio la recolección en 1951, es “Menos que la energía de un solo copo de nieve al dar en el suelo.”  en palabras del propio Carl Sagan.

Gracias a los telescopios pocas son las cosas que pasan en el Universo y que no puedan descubrir los astrónomos si se lo proponen. Pero aunque podemos ver muy lejos, quizás necesitamos mirar un poco mas cerca.

 

LIMITES DEL SISTEMA SOLAR

Aunque estemos en un Universo enorme, tan grande que nos es posible para la mente humana poder imaginar su extensión, el hombre siempre ha sido ambicioso, siempre quiere llegar mas lejos, mas profundo, queremos descubrir los secretos que aun están ocultos en el otro extremo de nuestro Cosmos, pero la realidad nos golpea con fuerza al notar que ni siquiera conocemos bien lo que esta relativamente cerca de nosotros… de nuestros planetas vecinos.

Para casi todas las personas el límite de nuestro Sistema Solar esta delimitado por el último planeta: Plutón. La mayoría de personas asegura que Plutón es un planeta cuando en realidad fue degradado de esa “categoría” y a pasado a  ser un “planeta enano” tras un intenso debate, la UAI (Unión Astronómica Internacional) decidió el 24 de agosto de 2006, por unanimidad, re-clasificar a Plutón.

Plutón es un “planeta enano”.

Ya hace 6 años desde que se llego a esa decisión que reduciría el número de planetas de 9 a 8 solamente, por experiencia propia puedo decir que he visto a muchas personas que aun creen que Plutón es un planeta mas, he leído varios textos que no han sido corregidos y siguen mostrando gráficos del Sistema Solar donde aun se incluye a Plutón como parte del conjunto de planetas. Y lo que mas me ha sorprendido e irritado es que profesores de escuela siguen enseñando a sus alumnos algo que ha sido modificado hace bastante tiempo y que no es solamente del conocimiento de mentes ilustres, sino de todas las personas en general.

Pero retomando el camino que dejamos hace unos párrafos arriba, si Plutón ya no es considerado un planeta y es para muchos el punto de referencia que delimita el Sistema Solar del resto del Cosmos, ahora que ya no es un planeta. ¿Cual es el límite del Sistema Solar en realidad?

En cuanto al propio Plutón, nadie está seguro del todo de cuál es su tamaño, de qué está hecho, qué tipo de atmósfera tiene e incluso de lo que es realmente. Muchos astrónomos creen que no es en modo alguno un planeta, que sólo es el objeto de mayor tamaño que se ha localizado hasta ahora en una región de desechos galácticos denominada cinturón Kuiper. El cinturón Kuiper fue postulado, en realidad, por un astrónomo llamado F. C. Leonard en 1930, pero el nombre honra a Gerard Kuiper, un holandés que trabajaba en Estados Unidos y que fue quien difundió la idea.

Cinturón de Kuiper.

El cinturón Kuiper es el origen de lo que llamamos cometas de periodo corto (los que pasan con bastante regularidad), el más famoso de los cuales es el cometa Halley. Los cometas de periodo largo, que son más retraídos —y entre los que figuran dos que nos han visitado recientemente, Hale-Bopp y Hyakutake— proceden de la nube Oort, mucho más alejada, y de la que hablaremos más en breve.

La Nube de Oort

¿Y cómo de lejos es eso exactamente? Resulta casi inimaginable. El espacio es sencillamente enorme… Sencillamente enorme y nunca me cansare de decirlo.

Imaginemos, sólo a efectos de edificación y entretenimiento, que estamos a punto de iniciar un viaje en una nave espacial. No vamos a ir muy lejos, sólo hasta el borde de nuestro sistema solar. Pero necesitamos hacernos una idea de lo grande que es el espacio y la pequeña parte del mismo que ocupamos.

Nos vamos de Viaje..!!

La mala noticia es que mucho me temo que no podamos estar de vuelta en casa para la cena. Incluso en el caso de que viajásemos a la velocidad de la luz (300.000 kilómetros por segundo), tardaríamos siete horas en llegar a Plutón. Pero no podemos aproximarnos siquiera a esa velocidad. Tendremos que ir a la velocidad de una nave espacial, y las naves espaciales son bastante más lentas. La velocidad máxima que ha conseguido hasta el momento un artefacto humano es la de las naves espaciales Voyager 1 y 2, que están ahora alejándose de nosotros a unos 56.000 kilómetros por hora.

La Sonda Voyager 1.

La razón de que se lanzasen estas naves cuando se lanzaron (en agosto y septiembre de 1977) era que Júpiter, Saturno, Urano y Neptuno estaban alineados de una forma que sólo se da una vez cada 175 años. Esto permitía a las dos naves utilizar una técnica de «aprovechamiento de la gravedad» por la que eran lanzadas sucesivamente de un gigante gaseoso al siguiente en una especie de versión cósmica de chasquido de látigo. Aun así, tardaron nueve años en llegar a Urano y doce en cruzar la órbita de Plutón.

De una forma u otra, será un viaje largo. Es probable que de lo primero que te des cuenta sea que el espacio tiene un nombre extraordinariamente apropiado y que es muy poco interesante, por desgracia.

Posiblemente nuestro sistema solar sea lo más animado que hay en billones de kilómetros, pero todo el material visible que contiene (el Sol, los planetas y sus lunas, los 1.000 millones de rocas que giran en el cinturón de asteroides, los cometas y demás cuerpos a la deriva) ocupan menos de una billonésima parte del espacio disponible.

 Te darás cuenta también enseguida de que ninguno de los mapas que hayas podido ver del sistema solar estaba dibujado ni siquiera remotamente a escala. La mayoría de los mapas que se ven en las clases muestra los planetas uno detrás de otro a intervalos de buena vecindad —los gigantes exteriores llegan incluso a proyectar sombras unos sobre otros en algunas ilustraciones) —, pero se trata de un engaño necesario para poder incluirlos a todos en la misma hoja. 

Sistema Solar representado sin escala

En verdad, Neptuno no está un poquito más lejos que Júpiter. Está mucho más allá de Júpiter, cinco veces más que la distancia que separa a Júpiter de la Tierra, tan lejos que recibe sólo un 3 % de la luz que recibe Júpiter. Las distancias son tales, en realidad, que no es prácticamente posible dibujar a escala el sistema solar. Aunque añadieses montones de páginas plegadas a los libros de texto o utilizases una hoja de papel de cartel realmente muy grande, no podrías aproximarte siquiera.

En un dibujo a escala del sistema solar, con la Tierra reducida al diámetro aproximado de un guisante, Júpiter estaría a 300 metros de distancia y, Plutón, a 2,5 kilómetros —y sería del tamaño similar al de una bacteria, así que de todos modos no podrías verlo—. A la misma escala, Próxima Centauri, que es la estrella que nos queda más cerca, estaría a 16.000 kilómetros de distancia. Aunque lo redujeses todo de tamaño hasta el punto en que Júpiter fuese tan pequeño como el punto final de esta frase y Plutón no mayor que una molécula, Plutón seguiría quedando a 1o metros de distancia.

Así que el sistema solar es realmente enorme. Cuando llegásemos a Plutón, nos habríamos alejado tanto del Sol —nuestro amado y cálido Sol, que nos broncea y nos da la vida—, que éste se habría quedado reducido al tamaño de una cabeza de alfiler. Sería poco más que una estrella brillante.

El Sol visto desde los planetas del Sistema Solar y Plutón.

En un vacío tan solitario se puede empezar a entender por qué han escapado a nuestra atención incluso los objetos más significativos (las lunas de Plutón, por ejemplo). Y Plutón no ha sido ni mucho menos un caso único a ese respecto. Hasta las expediciones del Voyager, se creía que Neptuno tenía dos lunas. El Voyager descubrió otras seis. Cuando yo era un niño, se creía que había 30 lunas en el sistema solar. Hoy el total es de 9o, como mínimo, y aproximadamente un tercio de ellas se han descubierto en los últimos años. Lo que hay que tener en cuenta, claro, cuando se considera el universo en su conjunto, es que ni siquiera sabemos en realidad lo que hay en nuestro sistema solar.

Bueno, la otra cosa que notarás, cuando pasemos a toda velocidad Plutón, es que estamos dejando atrás Plutón. Si compruebas el itinerario, verás que se trata de un viaje hasta el borde de nuestro sistema solar, y me temo que aún no hemos llegado. Plutón puede ser el último objeto que muestran los mapas escolares, pero el sistema solar no termina ahí. Ni siquiera estamos cerca del final al pasar Plutón.

El Cinturón de Kuiper.

Después de Plutón   hemos de pasar por El Cinturón de Kuiper. Es una región en forma de disco que se encuentra más allá de la órbita de Neptuno, aproximadamente entre 30 y 100 UA (Unidades Astronómicas) del Sol, que contiene muchos pequeños cuerpos helados. Actualmente se le considera la fuente de los cometas de periodo corto.  Aunque los valores de las estimaciones son bastante variables, se calcula que existen al menos 70.000 “transneptunianos” entre las 30 y 50 unidades astronómicas, con diámetros superiores a los 100 km. Más allá de las 50 UA es posible que existan más cuerpos de este tipo, pero en todo caso están fuera del alcance de las actuales técnicas de detección. Las observaciones muestran también que se hallan confinados dentro de unos pocos grados por encima o por debajo del plano de la eclíptica. Estos objetos se les conoce como KBO’s (Kuiper Belt Objects).

El estudio del cinturón de Kuiper es muy interesante por varios motivos:

  • Los objetos que contiene son remanentes muy primitivos de las primeras fases de acreción del sistema solar. La región central, más densa, se condensó para formar los planetas gigantes (las composiciones de Urano y Neptuno son casi idénticas a la de los cometas). En la región más y menos densa, la acreción progresó lentamente, pese a lo cual se formaron un gran número de pequeños cuerpos.
  • Es aceptado ampliamente que el cinturón de Kuiper es la fuente de los cometas de corto período, del mismo modo que la nube de Oort lo es para los de largo período.

Ocasionalmente, la órbita de un objeto del Cinturón de Kuiper se verá perturbada por las interacciones de los planetas gigantes de tal forma que cruzará la de Neptuno. Entonces será muy probable que tenga un encuentro cercano con Neptuno, quien le expulsará del sistema solar o lo enviará en una órbita que cruce las de los otros planetas gigantes o incluso hacia el sistema solar interior.

Curiosamente, parece que los objetos de la Nube de Oort se formaron más cerca del Sol que los objetos del Cinturón de Kuiper. Los objetos pequeños que se formaran cerca de los planetas gigantes habrían sido eyectados del sistema solar debido a los encuentros gravitatorios. Aquellos que no escaparan del todo formarían la distante Nube de Oort. Los objetos pequeños que se formaran más lejos no sufrirían estas interacciones y formarían el Cinturón de Kuiper.

La Nube de Oort.

No llegaremos hasta el borde del sistema solar hasta que hayamos cruzado la nube de Oort, un vasto reino celestial de cometas a la deriva, y no llegaremos hasta allí durante otros —lo siento muchísimo— 10.000 años. Plutón, lejos de hallarse en el límite exterior del sistema solar, como tan displicentemente indicaban aquellos mapas escolares, Plutón se encuentra apenas a una cincuenta-milésima parte del trayecto.

No tenemos ninguna posibilidad de hacer semejante viaje, claro. Los 386.000 kilómetros del viaje hasta la Luna. Aún representan para nosotros una empresa de enorme envergadura. La misión tripulada a Marte, solicitada por el primer presidente Bush en un momento de atolondramiento pasajero, se desechó tajantemente cuando alguien averiguó que costaría 450.000 millones de dólares y que, con probabilidad, acabaría con la muerte de todos los tripulantes.

Basándonos en lo que sabemos ahora yen lo que podemos razonablemente imaginar, no existe absolutamente ninguna posibilidad de que un ser humano llegue nunca a visitar el borde de nuestro sistema solar… nunca. Queda demasiado lejos. Tal como están las cosas, ni siquiera con el telescopio Hubble podemos ver el interior de la nube Oort, así que no podemos saber en realidad lo que hay allí. Su existencia es probable, pero absolutamente hipotética.” Lo único que se puede decir con seguridad sobre la nube Oort es, más o menos, que empieza en algún punto situado más allá de Plutón y que se extiende por el cosmos a lo largo de unos dos años luz. La unidad básica de medición en el sistema solar es la Unidad Astronómica, UA, que representa la distancia del Sol a la Tierra.

Plutón está a unas 40 UA de la Tierra y, el centro de la nube Oort, a unas 50.000 UA.

Ls verdadera extensión de nuestro Sistema Solar.

El Sistema Solar en Perspectiva.

Pero finjamos de nuevo que hemos llegado a la nube Oort. Lo primero que advertirías es lo tranquilísimo que está todo allí. Nos encontramos ya lejos de todo… tan lejos de nuestro Sol que ni siquiera es la estrella más brillante del firmamento. Parece increíble que ese diminuto y lejano centelleo tenga gravedad suficiente para mantener en órbita a todos esos cometas. No es un vínculo muy fuerte, así que los cometas se desplazan de un modo mayestático, a una velocidad de unos 563 kilómetros por hora. De cuando en cuando, alguna ligera perturbación gravitatoria (una estrella que pasa, por ejemplo) desplaza de su órbita normal a uno de esos cometas solitarios. A veces se precipitan en el vacío del espacio y nunca se los vuelve a ver, pero otras veces caen en una larga órbita alrededor del Sol.

Esquema del Sistema Solar.

Ese es nuestro verdadero Sistema Solar, mucho mas grande de lo que pensábamos. Aunque en el vasto Universo, nuestro Sistema Solar es como un grano de arena en un desierto infinito…!!  

Pero en vez de desanimarnos al ver el enorme Cosmos lleno de secretos, debemos alegrarnos puesto que hay mucho por descubrir, mucho por discutir y mucho por aportar a la Ciencia…

Referencias |

Anuncios

El agujero negro de mayor masa del universo

Se ha descubierto un agujero negro que sacude los cimientos de muchos modelos actuales de evolución galáctica. Este monstruo tiene 17.000 millones de veces la masa del Sol, y es, por tanto, bastante más pesado de lo predicho por los modelos. Y aún más importante: el objeto podría ser el agujero negro más masivo conocido hasta la fecha.

Los astrónomos creen que hay un agujero negro supermasivo en el centro de cada galaxia. La masa de los agujeros negros de esa clase va desde varios cientos de miles de masas solares hasta unos pocos miles de millones. El agujero negro mejor investigado tiene alrededor de cuatro millones de masas solares y se encuentra en el centro de nuestra galaxia, la Vía Láctea.

En los estudios sobre las masas de galaxias distantes y sus agujeros negros se ha comprobado una interesante correlación: Un agujero negro alcanza típicamente sólo una fracción muy concreta de la masa total de la galaxia. Aunque no se conoce muy bien el por qué de esta proporción, desempeña un papel importante en todos los modelos teóricos actuales sobre evolución de galaxias.

Ahora, durante una búsqueda sistemática que se inició en 2010, y en la que se ha trabajado con el telescopio Hobby-Eberly y las imágenes archivadas del telescopio espacial Hubble, el equipo dirigido por Remco van den Bosch, del Instituto Max Planck para la Astronomía en Alemania, ha localizado un agujero negro que incumple esta proporción.

Está en el centro de la galaxia NGC 1277, ubicada a 220 millones de años-luz, en la constelación de Perseo. NGC 1277 tiene tan sólo el 10 por ciento del tamaño y de la masa de nuestra Vía Láctea.

[Img #11313]

Con el fin de determinar la masa del agujero negro, van den Bosch y sus colegas produjeron un modelo dinámico de la galaxia que incluye todas las órbitas estelares posibles. Comparaciones sistemáticas de los datos del modelo con los de las observaciones mostraron qué combinaciones de órbitas y valores de masa del agujero negro proporcionan la mejor explicación para las observaciones.

El resultado es que el agujero negro del centro de NGC 1277 debe tener alrededor de 17.000 millones de masas solares. Esto significa que el agujero podría ser el más masivo conocido. Se calcula que la masa del agujero negro que ahora ostenta el récord actual debe tener entre 6.000 y 37.000 millones de masas solares. Si el valor real está en el extremo inferior de este rango, el agujero de NGC 1277 superaría este récord.

Sin embargo, la mayor sorpresa para los astrónomos es que este agujero tan masivo esté en una galaxia bastante pequeña. A juzgar por el tamaño de ésta, el agujero negro debería ser mucho menos masivo, si tenemos en cuenta la citada proporción típica entre masa de una galaxia y masa de su agujero negro central.

Es que acaso los científicos se han equivocado, o es algo que escapa de los precedentes históricos de la astronomía y la astrofisica…

MAYOR INFORMACIÓN: http://www.mpg.de/6648360/black-hole-galaxy-models?filter_order=L

¿Qué es un agujero negro?

Lo que muchas personas imaginan cuando se les habla de un Agujero Negro es que es un gran “hoyo” en el espacio por el cual entran cuerpos que nunca salen debido a que este “hoyo” tiene una profundidad indefinida o infinita… Esa idea no esta tan lejos de la realidad, solo que deben de corregirse algunos detalles que aquí veremos…

Para entender lo que es un agujero negro empecemos por una estrella como el Sol. El Sol tiene un diámetro de 1.390.000 kilómetros y una masa 330.000 veces superior a la de la Tierra. Teniendo en cuenta esa masa y la distancia de la superficie al centro se demuestra que cualquier objeto colocado sobre la superficie del Sol estaría sometido a una atracción gravitatoria 28 veces superior a la gravedad terrestre en la superficie.

Una estrella corriente conserva su tamaño normal gracias al equilibrio entre una altísima temperatura central, que tiende a expandir la sustancia estelar, y la gigantesca atracción gravitatoria, que tiende a contraerla y estrujarla.

Si en un momento dado la temperatura interna desciende, la gravitación se hará dueña de la situación. La estrella comienza a contraerse y a lo largo de ese proceso la estructura atómica del interior se desintegra. En lugar de átomos habrá ahora electrones, protones y neutrones sueltos. La estrella sigue contrayéndose hasta el momento en que la repulsión mutua de los electrones contrarresta cualquier contracción ulterior.

La estrella es ahora una «enana blanca». Si una estrella como el Sol sufriera este colapso que conduce al estado de enana blanca, toda su masa quedaría reducida a una esfera de unos 16.000 kilómetros de diámetro, y su gravedad superficial (con la misma masa pero a una distancia mucho menor del centro) sería 210.000 veces superior a la de la Tierra.

En determinadas condiciones la atracción gravitatoria se hace demasiado fuerte para ser contrarrestada por la repulsión electrónica. La estrella se contrae de nuevo, obligando a los electrones y protones a combinarse para formar neutrones y forzando también a estos últimos a apelotonarse en estrecho contacto. La estructura neutrónica contrarresta entonces cualquier ulterior contracción y lo que tenemos es una «estrella de neutrones», que podría albergar toda la masa de nuestro sol en una esfera de sólo 16 kilómetros de diámetro. La gravedad superficial sería 210.000.000.000 veces superior a la que tenemos en la Tierra.

En ciertas condiciones, la gravitación puede superar incluso la resistencia de la estructura neutrónica. En ese caso ya no hay nada que pueda oponerse al colapso. La estrella puede contraerse hasta un volumen cero y la gravedad superficial aumentar hacia el infinito.

Según la teoría de la relatividad, la luz emitida por una estrella pierde algo de su energía al avanzar contra el campo gravitatorio de la estrella. Cuanto más intenso es el campo, tanto mayor es la pérdida de energía, lo cual ha sido comprobado experimentalmente en el espacio y en el laboratorio.

La luz se pierde en un agujero negro

La luz emitida por una estrella ordinaria como el Sol pierde muy poca energía. La emitida por una enana blanca, algo más; y la emitida por una estrella de neutrones aún más. A lo largo del proceso de colapso de la estrella de neutrones llega un momento en que la luz que emana de la superficie pierde toda su energía y no puede escapar. Por eso es que se dice que ni la luz puede escapar de la fuerza gravitacional de un agujero negro.

Un objeto sometido a una compresión mayor que la de las estrellas de neutrones tendría un campo gravitatorio tan intenso, que cualquier cosa que se aproximara a él quedaría atrapada y no podría volver a salir. Es como si el objeto atrapado hubiera caído en un agujero infinitamente hondo y no cesase nunca de caer. Y como ni siquiera la luz puede escapar, el objeto comprimido será negro. Literalmente, un «agujero negro». 

Entonces podemos resumir que un agujero negro, no es un agujero, es una estrella que tiene un campo gravitatorio tan grande que nada que este cerca de ella puede salir de su superficie, ni siquiera la luz, por tanto es un objeto comprimido completamente negro.

Hoy día los astrónomos están encontrando pruebas de la existencia de agujeros negros en distintos lugares del universo…

Y mas recientemente es mas que probable que exista un agujero negro supermasivo en el centro de todas las galaxias que conocemos… Incluida la vía Lactea